cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026736 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k=(n-2)/2, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 6, 11, 10, 5, 1, 1, 7, 22, 21, 15, 6, 1, 1, 8, 29, 43, 36, 21, 7, 1, 1, 9, 37, 94, 79, 57, 28, 8, 1, 1, 10, 46, 131, 173, 136, 85, 36, 9, 1, 1, 11, 56, 177, 398, 309, 221, 121, 45, 10, 1, 1, 12, 67, 233, 575, 707, 530, 342, 166, 55, 11, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, i+2)-to-(i+1, i+3) for i >= 0.

Examples

			Triangle begins
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,   1;
  1,  5,  6,   4,   1;
  1,  6, 11,  10,   5,   1;
  1,  7, 22,  21,  15,   6,   1;
  1,  8, 29,  43,  36,  21,   7,   1;
  1,  9, 37,  94,  79,  57,  28,   8,   1;
  1, 10, 46, 131, 173, 136,  85,  36,   9,   1;
  1, 11, 56, 177, 398, 309, 221, 121,  45,  10,   1;
  1, 12, 67, 233, 575, 707, 530, 342, 166,  55,  11,  1;
  ...
		

Crossrefs

Row sums give A026743.
T(2n,n) gives A026737(n) or A111279(n+1).

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 16 2019
  • Mathematica
    T[, 0] = T[n, n_] = 1; T[n_, k_] := T[n, k] = If[EvenQ[n] && k == (n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 22 2018 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 16 2019
    

Extensions

Offset corrected by Alois P. Heinz, Jul 23 2018