A026798 Number of partitions of n in which the least part is 5.
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g
Crossrefs
Essentially the same as A185325.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), this sequence (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Nov 11 2011
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); [1,0,0,0,0] cat Coefficients(R!( x^5/(&*[1-x^(m+5): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019 -
Maple
ZL := [ B,{B=Set(Set(Z, card>=5))}, unlabeled ]: 1,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..54); # Zerinvary Lajos, Mar 13 2007 1, seq(coeff(series(x^5/mul(1-x^(m+5), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
-
Mathematica
f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Join[{1, 0, 0, 0, 0, 1}, Table[ f[n, 5], {n, 50}]] (* Robert G. Wilson v *) Join[{1}, Drop[CoefficientList[Series[x^5/QPochhammer[x^5, x], {x,0,60}], x], 1]] (* G. C. Greubel, Nov 03 2019 *)
-
PARI
my(x='x+O('x^60)); concat([1,0,0,0,0], Vec(x^5/prod(m=0,70, 1-x^(m+5)))) \\ G. C. Greubel, Nov 03 2019
-
Sage
def A026798_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^5/product((1-x^(m+5)) for m in (0..70)) ).list() a=A026798_list(65); [1]+a[1:] # G. C. Greubel, Nov 03 2019
Formula
G.f.: x^5 * Product_{m>=5} 1/(1-x^m).
a(n+5) is given by p(n) - p(n-1) - p(n-2) + 2p(n-5) - p(n-8) - p(n-9) + p(n-10) where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010 [sign of 10 and offset of formula corrected by Jason Kimberley, Nov 11 2011]
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (6*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018
Comments