A026800 Number of partitions of n in which the least part is 7.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 24, 27, 32, 36, 42, 48, 56, 63, 73, 83, 96, 108, 125, 141, 162, 183, 209, 236, 270, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153, 1291, 1453, 1628, 1829, 2045
Offset: 0
Examples
a(0)=0 because there does not exist a least part of the empty partition. The a(7)=1 partition is 7. The a(14)=1 partition is 7+7. The a(15)=1 partition is 7+8. ............................. The a(20)=1 partition is 7+13. The a(21)=2 partitions are 7+7+7 and 7+14.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g
Crossrefs
Cf. A185327 (Mathematica code)
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), this sequence (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 03 2011
Programs
-
Magma
p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >; A026800 := func< n | p(n-7)-p(n-8)-p(n-9)+p(n-12)+2*p(n-14)-p(n-16)- p(n-17)-p(n-18)-p(n-19)+2*p(n-21)+p(n-23)-p(n-26)-p(n-27)+p(n-28) >; // Jason Kimberley, Feb 03 2011
-
Magma
R
:=PowerSeriesRing(Integers(), 75); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/(&*[1-x^(m+7): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019 -
Maple
N:= 100: # for a(0)..a(N) S:= series(x^7/mul(1-x^i,i=7..N-7),x,N+1): seq(coeff(S,x,i),i=0..N); # Robert Israel, Jul 04 2019
-
Mathematica
CoefficientList[Series[x^7/QPochhammer[x^7, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *) Join[{0},Table[Count[IntegerPartitions[n],?(#[[-1]]==7&)],{n,80}]] (* _Harvey P. Dale, Apr 05 2025 *)
-
PARI
my(x='x+O('x^75)); concat([0,0,0,0,0,0,0], Vec(x^7/prod(m=0,80, 1-x^(m+7)))) \\ G. C. Greubel, Nov 03 2019
-
Sage
def A026800_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^7/product((1-x^(m+7)) for m in (0..80)) ).list() A026800_list(75) # G. C. Greubel, Nov 03 2019
Formula
G.f.: x^7 * Product_{m>=7} 1/(1-x^m).
a(n) = p(n-7) -p(n-8) -p(n-9) +p(n-12) +2*p(n-14) -p(n-16) -p(n-17) -p(n-18) -p(n-19) +2*p(n-21) +p(n-23) -p(n-26) -p(n-27) +p(n-28) where p(n)=A000041(n) including the implicit p(n)=0 for negative n. - Shanzhen Gao, Oct 28 2010; offset corrected / made explicit by Jason Kimberley, Feb 03 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(7*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020
Extensions
More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001
Comments