cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026830 Number of partitions of n into distinct parts, the least being 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 9, 9, 11, 12, 14, 15, 18, 19, 22, 24, 27, 29, 33, 36, 40, 44, 49, 54, 60, 66, 73, 81, 89, 98, 108, 119, 130, 144, 157, 173, 189, 208, 227, 250, 272, 299, 326, 358, 389
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`((i-9)*(i+10)/2 `if`(n<9, 0, b(n-9$2)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    dp9[n_]:=Module[{ips=IntegerPartitions[n]},Length[Select[ips,Min[#] == 9 && Length[#]==Length[Union[#]]&]]]; Table[dp9[n],{n,0,80}] (* Harvey P. Dale, Oct 23 2015 *)
    Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 9], {n, 66}]] (* Robert Price, Jun 13 2020 *)

Formula

a(n) = A025155(n-9), n>9. - R. J. Mathar, Jul 31 2008
G.f.: x^9*Product_{j>=10} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: Sum_{k>=1} x^(k*(k + 17)/2) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020