A026838 Number of partitions of n into distinct parts, the greatest being even.
0, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 83, 96, 111, 128, 148, 170, 195, 224, 256, 292, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859
Offset: 1
Keywords
Examples
a(8)=3 because we have [8],[6,2] and [4,3,1].
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- I. Pak, On Fine's partition theorems, Dyson, Andrews and missed opportunities, Math. Intelligencer, 25 (No. 1, 2003), 10-16.
Programs
-
Maple
g:=sum(x^(2*k)*product(1+x^j,j=1..2*k-1),k=1..50): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 04 2006
-
Mathematica
nn=54;CoefficientList[Series[Sum[x^(2j)Product[1+ x^i,{i,1,2j-1}],{j,0,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Jun 20 2014 *)
Formula
G.f.: sum(k>=1, x^(2k) * prod(j=1..2k-1, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118301(2*n), a(2*n-1) = A118302(2*n-1); a(n) = A000009(n) - A026837(n). - Reinhard Zumkeller, Apr 22 2006
Comments