A026961 Self-convolution of array T given by A026626.
1, 2, 11, 34, 138, 492, 1830, 6804, 25576, 96728, 367932, 1405884, 5392590, 20751504, 80076872, 309748096, 1200669828, 4662772672, 18137643524, 70657441212, 275620281310, 1076429623256, 4208562777342, 16470788108008, 64519534566362, 252948764993472, 992453764928050
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
p1:= func< n | -1864800 + 1239076*n + 7915984*n^2 - 11263411*n^3 + 5406551*n^4 - 1042185*n^5 + 65025*n^6 >; p2:= func< n | -4505760 + 7236856*n + 10545958*n^2 - 20700889*n^3 + 10823147*n^4 - 2188767*n^5 + 143055*n^6 >; p3:= func< n | -1522080 + 2667320*n + 3116288*n^2 - 6715322*n^3 + 3619972*n^4 - 755718*n^5 + 52020*n^6 >; p4:= func< n | 42*(-376320 + 434044*n + 1225808*n^2 - 1997637*n^3 + 1002947*n^4 - 199767*n^5 + 13005*n^6) >; p5:= func< n | 2*(-559440 + 1665230*n - 243157*n^2 - 1361078*n^3 + 898312*n^4 - 195432*n^5 + 13005*n^6) >; I:=[11, 34, 138]; [1,2] cat [n le 3 select I[n] else (p1(n)*Self(n-1) + p2(n)*Self(n-2) + p3(n)*Self(n-3) + p4(n))/p5(n) : n in [1..40]]; // G. C. Greubel, Jun 21 2024
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, (6*n-1 + (-1)^n)/4, T[n-1,k-1] +T[n-1,k]]]; A026961[n_]:= A026961[n] = Sum[T[n,k]*T[n,n-k], {k,0,n}]; Table[A026961[n], {n,0,50}] (* G. C. Greubel, Jun 21 2024 *)
-
SageMath
@CachedFunction def T(n, k): # T = A026626 if (k==0 or k==n): return 1 elif (k==1 or k==n-1): return int(3*n//2) else: return T(n-1, k-1) + T(n-1, k) def A026961(n): return sum(T(n,k)*T(n,n-k) for k in range(n+1)) [A026961(n) for n in range(41)] # G. C. Greubel, Jun 21 2024
Formula
From G. C. Greubel, Jun 21 2024: (Start)
a(n) = Sum_{k=0..n} T(n, k)*T(n, n-k). - G. C. Greubel, Jun 21 2024
a(n) = (p1(n)*a(n-1) + p2(n)*a(n-2) + p3(n)*a(n-3) + p4(n))/p5(n), where
p1(n) = 22589280 - 75610404*n + 85542748*n^2 - 44611965*n^3 + 11592851*n^4 - 1432335*n^5 + 65025*n^6.
p2(n) = 32659200 - 131052480*n + 161621002*n^2 - 88742247*n^3 + 23912807*n^4 - 3047097*n^5 + 143055*n^6.
p3(n) = 2*(5034960 - 21140910*n + 26659783*n^2 - 14896395*n^3 + 4089431*n^4 - 533919*n^5 + 26010*n^6).
p4(n) = 42*(3628800 - 13099136*n + 15429146*n^2 - 8267195*n^3 + 2196857*n^4 - 277797*n^5 + 13005*n^6).
p5(n) = 2*n*(-6580128 + 11379344*n - 7168746*n^2 + 2070547*n^3 - 273462*n^4 + 13005*n^5). (End)
Extensions
More terms from Sean A. Irvine, Oct 20 2019