cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A026635 a(n) = Sum_{i=0..n} Sum_{j=0..n} A026626(i,j).

Original entry on oeis.org

1, 3, 8, 18, 40, 84, 174, 354, 716, 1440, 2890, 5790, 11592, 23196, 46406, 92826, 185668, 371352, 742722, 1485462, 2970944, 5941908, 11883838, 23767698, 47535420, 95070864, 190141754, 380283534, 760567096, 1521134220, 3042268470, 6084536970, 12169073972
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (17*2^n -6*n-9+(-1)^n)/6: n in [0..40]]; // G. C. Greubel, Jun 21 2024
    
  • Mathematica
    LinearRecurrence[{3,-1,-3,2},{1,3,8,18,40},40] (* Harvey P. Dale, Jan 17 2024 *)
  • PARI
    Vec((1 + x^4) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Sep 29 2017
    
  • SageMath
    [(17*2^n -6*n -9 +(-1)^n -3*int(n==0))/6 for n in range(41)] # G. C. Greubel, Jun 21 2024

Formula

G.f.: (1+x^4)/((1-x)*(1-2*x)*(1-x^2)). - Ralf Stephan, Apr 30 2004
From Colin Barker, Sep 29 2017: (Start)
a(n) = (17*2^n - 6*n - 9 + (-1)^n)/6 for n>0.
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n>4. (End)
E.g.f.: (1/6)*(-3 - 3*(3+2*x)*exp(x) + 17*exp(2*x) + exp(-x)). - G. C. Greubel, Jun 21 2024

A026636 a(n) = Sum_{k=0..floor(n/2)} A026626(n-k, k).

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 30, 47, 78, 125, 205, 330, 536, 866, 1404, 2270, 3675, 5945, 9622, 15567, 25190, 40757, 65949, 106706, 172656, 279362, 452020, 731382, 1183403, 1914785, 3098190, 5012975, 8111166, 13124141, 21235309
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,4,6,11,17,30]; [1,1] cat [n le 6 select I[n] else Self(n-1) +Self(n-2) +Self(n-4) -Self(n-5) -Self(n-6): n in [1..50]]; // G. C. Greubel, Jun 21 2024
    
  • Mathematica
    LinearRecurrence[{1,1,0,1,-1,-1}, {1,1,2,4,6,11,17,30}, 41] (* G. C. Greubel, Jun 21 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026636
        if n<8: return (1,1,2,4,6,11,17,30)[n]
        else: return a(n-1) +a(n-2) +a(n-4) -a(n-5) -a(n-6)
    [a(n) for n in range(41)] # G. C. Greubel, Jun 21 2024

Formula

G.f.: (1 + x^3 - x^4 + x^5 + x^7)/((1-x^4)*(1-x-x^2)).
From G. C. Greubel, Jun 21 2024: (Start)
a(n) = (1/20)*(2*LucasL(n-1) + 70*Fibonacci(n-1) - 15*(1+(-1)^n) - 4*cos((n-1)*Pi/2) - 2*sin((n-1)*Pi/2)) - [n=0] + [n=1].
E.g.f.: (1/10)*(cos(x) - 2*sin(x) - 15*cosh(x) - 10*(1 - x) + 2*exp(x/2)*(17*cosh(sqrt(5)*x/2) - 3*sqrt(5)*sinh(sqrt(5)*x/2))). (End)

A026626 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor(3*n/2) for n >= 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 8, 6, 1, 1, 7, 14, 14, 7, 1, 1, 9, 21, 28, 21, 9, 1, 1, 10, 30, 49, 49, 30, 10, 1, 1, 12, 40, 79, 98, 79, 40, 12, 1, 1, 13, 52, 119, 177, 177, 119, 52, 13, 1, 1, 15, 65, 171, 296, 354, 296, 171, 65, 15, 1, 1, 16, 80, 236, 467, 650, 650, 467, 236, 80, 16, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  4,   1;
  1,  6,  8,   6,   1;
  1,  7, 14,  14,   7,   1;
  1,  9, 21,  28,  21,   9,   1;
  1, 10, 30,  49,  49,  30,  10,   1;
  1, 12, 40,  79,  98,  79,  40,  12,   1;
  1, 13, 52, 119, 177, 177, 119,  52,  13,   1;
  1, 15, 65, 171, 296, 354, 296, 171,  65,  15,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A026626
      if k eq 0 or k eq n then return 1;
      elif k eq 1 or k eq n-1 then return Floor(3*n/2);
      else return T(n-1,k-1) + T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, (6*n-1+(-1)^n)/4, T[n-1, k-1] + T[n-1, k] ]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2024 *)
  • SageMath
    def T(n,k): # T = A026626
        if (k==0 or k==n): return 1
        elif (k==1 or k==n-1): return int(3*n//2)
        else: return T(n-1,k-1) + T(n-1,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 19 2024

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 0 and even and for j=0, i >= 0 and even.
From G. C. Greubel, Jun 19 2024: (Start)
T(n, n-k) = T(n, k)
T(n, 1) = (-1)^n*A084056(n) = A032766(n), n >= 1.
T(n, 2) = A006578(n-1), n >= 2.
T(n, 3) = (1/16)*(4*n^3 - 14*n^2 + 12*n + 15 + (-1)^n) - [n=3] , n >= 3.
Sum_{k=0..n} (-1)^k*T(n, k) = A176742(n) + [n=2].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/4)*((-1)^n*(8/sqrt(3)* sin(2*(n+1)*Pi/3) - 2*cos(n*Pi/2) + 1) - 3) + [n<2].
Sum_{k=0..n} k*T(n, k) = (1/6)*n*(17*2^(n-2) - 2 - (1-(-1)^n)) + (1/4)*[n=1]. (End)

A026627 a(n) = A026626(2*n, n).

Original entry on oeis.org

1, 3, 8, 28, 98, 354, 1300, 4834, 18142, 68578, 260720, 995856, 3818644, 14690940, 56677652, 219195454, 849523318, 3298629106, 12829651312, 49973834584, 194917940188, 761178474076, 2975764881352, 11645184195364
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 2*n-1 else ((357*n^3-2696*n^2+6441*n-4822)*Self(n-1) +2*(2*n-7)*(51*n^2-203*n+188)*Self(n-2))/(2*(n-1)*(51*n^2-305*n+442)): n in [1..41]]; // G. C. Greubel, Jun 19 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<2, 2*n+1, ((357*n^3 -1625*n^2 +2120*n -720)*a[n-1] +2*(2*n-5)*(51*n^2 -101*n +36)*a[n-2])/(2*n*(51*n^2-203*n+188))];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jun 19 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026627
        if n<2: return 2*n+1
        else: return ((357*n^3 -1625*n^2 +2120*n -720)*a(n-1) +2*(2*n-5)*(51*n^2 -101*n +36)*a(n-2))/(2*n*(51*n^2 -203*n +188))
    [a(n) for n in range(41)] # G. C. Greubel, Jun 19 2024

Formula

a(n) = ( (357*n^3 - 1625*n^2 + 2120*n - 720)*a(n-1) + 2*(2*n-5)*(51*n^2 - 101*n + 36)*a(n-2) )/(2*n*(51*n^2 - 203*n + 188)), for n >= 2, with a(0) = 1, a(1) = 3.

A026628 a(n) = A026626(2*n, n-1).

Original entry on oeis.org

1, 6, 21, 79, 296, 1117, 4237, 16147, 61782, 237208, 913466, 3526826, 13647886, 52920075, 205566205, 799791235, 3116196550, 12157265980, 47485135510, 185671296850, 726703966600, 2846827216330, 11161555459090, 43794648931054
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 5*n-4 else ((357*n^4-1625*n^3+2157*n^2-841*n+60)*Self(n-1) +2*(2*n-5)*(51*n^3-101*n^2+34*n+6)*Self(n-2))/(2*(n+1)*(51*n^3-254*n^2+389*n-180)): n in [1..41]]; // G. C. Greubel, Jun 19 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, 5*n-4, ((357*n^4 -1625*n^3 +2157*n^2 -841*n +60 )*a[n-1] +2*(2*n-5)*(51*n^3 -101*n^2 +34*n +6)*a[n-2])/(2*(n+1)*(51*n^3 -254*n^2 +389*n -180))];
    Table[a[n], {n,41}]
  • SageMath
    @CachedFunction
    def a(n): # a = A026628
        if n<3: return 5*n-4
        else: return ((357*n^4 -1625*n^3 +2157*n^2 -841*n +60)*a(n-1) +2*(2*n-5)*(51*n^3 -101*n^2 +34*n +6)*a(n-2))/(2*(n+1)*(51*n^3-254*n^2+389*n-180))
    [a(n) for n in range(1,41)] # G. C. Greubel, Jun 19 2024

Formula

a(n) = ( (357*n^4 - 1625*n^3 + 2157*n^2 - 841*n + 60)*a(n-1) + 2*(2*n-5)*(51*n^3 - 101*n^2 + 34*n + 6)*a(n-2) )/(2*(n+1)*(51*n^3 - 254*n^2 + 389*n - 180)), for n >= 3, with a(1) = 1, a(2) = 6. - G. C. Greubel, Jun 19 2024
a(n) ~ 17 * 2^(2*n-2) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 09 2025

A026629 a(n) = A026626(2*n, n-2).

Original entry on oeis.org

1, 9, 40, 171, 703, 2839, 11346, 45066, 178330, 704038, 2775590, 10933363, 43048403, 169463371, 667090762, 2626243774, 10340952238, 40727191246, 160443432712, 632240809054, 2492136145078, 9826353817510, 38756552628820
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 8*n-7 else ((357*n^5 -197*n^4 -465*n^3 -115*n^2 -72*n + 252)*Self(n-1) +2*(2*n-3)*(51*n^4 +52*n^3 -21*n^2 +2*n -12)*Self(n-2))/(2*(n+3)*(51*n^4-152*n^3+129*n^2-4*n-36)): n in [1..41]]; // G. C. Greubel, Jun 20 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<4, 8*n-15, ((357*n^5 -1982*n^4 +3893*n^3 -3472*n^2 + 1336*n +120)*a[n-1] + 2*(2*n-5)*(51*n^4 -152*n^3 +129*n^2 -4*n -36)*a[n-2])/(2*(n+2)*(51*n^4 -356*n^3 +891*n^2 -922*n +300))];
    Table[a[n], {n,2,41}] (* G. C. Greubel, Jun 20 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026629
        if n<4: return 8*n-15
        else: return ((357*n^5 -1982*n^4 +3893*n^3 -3472*n^2 +1336*n + 120)*a(n-1) +2*(2*n-5)*(51*n^4 -152*n^3 +129*n^2 -4*n -36)*a(n-2) )/(2*(n+2)*(51*n^4-356*n^3+891*n^2-922*n+300))
    [a(n) for n in range(2,41)] # G. C. Greubel, Jun 20 2024

Formula

a(n) = ((357*n^5 - 1982*n^4 + 3893*n^3 - 3472*n^2 + 1336*n + 120)*a(n-1) + 2*(2*n-5)*(51*n^4 - 152*n^3 + 129*n^2 - 4*n - 36)*a(n-2))/(2*(n+2)*(51*n^4 - 356*n^3 + 891*n^2 - 922*n + 300)), for n >= 4, with a(2) = 1, a(3) = 9. - G. C. Greubel, Jun 20 2024

A026630 a(n) = A026626(2*n-1, n-1).

Original entry on oeis.org

1, 4, 14, 49, 177, 650, 2417, 9071, 34289, 130360, 497928, 1909322, 7345470, 28338826, 109597727, 424761659, 1649314553, 6414825656, 24986917292, 97458970094, 380589237038, 1487882440676, 5822592097682, 22806739654454
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 2*3^n -2^n else ((357*n^3 -554*n^2 -59*n +132)*Self(n-1) +2*(2*n-3)*(51*n^2 +n -14)*Self(n-2))/(2*(n+1)*(51*n^2-101*n+36)): n in [1..40]]; // G. C. Greubel, Jun 20 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<4, 2*3^(n-1) -2^(n-1), ((357*n^3 -1625*n^2 +2120*n - 720)*a[n-1] +2*(2*n-5)*(51*n^2 -101*n +36)*a[n-2])/(2*n*(51*n^2 - 203*n +188))];
    Table[a[n], {n,40}] (* G. C. Greubel, Jun 20 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026630
        if (n<4): return 2*3^(n-1) -2^(n-1)
        else: return ((357*n^3 -1625*n^2 +2120*n - 720)*a(n-1) +2*(2*n-5)*(51*n^2 -101*n +36)*a(n-2))/(2*n*(51*n^2 - 203*n +188))
    [a(n) for n in range(1,41)] # G. C. Greubel, Jun 20 2024

Formula

a(n) = ((357*n^3 - 1625*n^2 + 2120*n - 720)*a(n-1) +2*(2*n-5)*(51*n^2 - 101*n + 36)*a(n-2))/(2*n*(51*n^2 - 203*n + 188)), with a(1) = 1, a(2) = 4, and a(3) = 14. - G. C. Greubel, Jun 20 2024

A026631 a(n) = A026626(2*n-1, n-2).

Original entry on oeis.org

1, 7, 30, 119, 467, 1820, 7076, 27493, 106848, 415538, 1617504, 6302416, 24581249, 95968478, 375029576, 1466881997, 5742440324, 22498218218, 88212326756, 346114729562, 1358944775654, 5338963361408, 20987909276600
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 23*(n+2)-62 else ((357*n^4 +874*n^3 +495*n^2 - 166*n -192)*Self(n-1) + 2*(2*n-1)*(51*n^3 +154*n^2 +137*n + 42 )*Self(n-2))/(2*(n+3)*(51*n^3 +n^2 -18*n +8)): n in [1..40]]; // G. C. Greubel, Jun 20 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<5, 23*n-62, ((357*n^4 -1982*n^3 +3819*n^2 -3082*n + 840)*a[n-1] +2*(2*n-5)*(51*n^3 -152*n^2 +133*n -24)*a[n-2] )/(2*(n + 1)*(51*n^3 -305*n^2 +590*n -360))] +17*Boole[n==2];
    Table[a[n], {n, 2, 40}] (* G. C. Greubel, Jun 20 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026631
        if (n==2): return 1
        elif (n<5): return 23*n - 62
        else: return ((357*n^4 -1982*n^3 +3819*n^2 -3082*n +840)*a(n-1) +2*(2*n-5)*(51*n^3 -152*n^2 +133*n -24)*a(n-2))/(2*(n+1)*(51*n^3 -305*n^2 +590*n -360))
    [a(n) for n in range(2,41)] # G. C. Greubel, Jun 20 2024

Formula

a(n) = ((357*n^4 -1982*n^3 +3819*n^2 -3082*n +840)*a(n-1) +2*(2*n-5)*(51*n^3 -152*n^2 +133*n -24)*a(n-2))/(2*(n+1)*(51*n^3 -305*n^2 +590*n -360)), for n >= 5, with a(2) = 1, a(3) = 7, and a(4) = 30. - G. C. Greubel, Jun 20 2024

A026632 a(n) = A026626(n, floor(n/2)).

Original entry on oeis.org

1, 1, 3, 4, 8, 14, 28, 49, 98, 177, 354, 650, 1300, 2417, 4834, 9071, 18142, 34289, 68578, 130360, 260720, 497928, 995856, 1909322, 3818644, 7345470, 14690940, 28338826, 56677652, 109597727, 219195454, 424761659, 849523318
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 4 select Fibonacci(n+2) -(1-(-1)^n)/2 else (4*(867*n^4 - 11934*n^3 +58705*n^2 -123374*n +95280)*Self(n-1) +(6069*n^5 - 91817*n^4 +525005*n^3 -1404375*n^2 +1742414*n -803760)*Self(n-2) +2*(867*n^4 -11934*n^3 +58705*n^2 -123374*n +95280)*Self(n-3) +4*(n-5)*(867*n^4 -8534*n^3 +28921*n^2 -39246*n +17712)*Self(n-4))/(2*(n+1)*(867*n^4 -12002*n^3 +59725*n^2 -126158*n +95280)): n in [1..40]]; // G. C. Greubel, Jun 20 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, (6*n-1 + (-1)^n)/4, T[n-1,k-1] +T[n-1,k]]];
    Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jun 20 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026626
        if (k==0 or k==n): return 1
        elif (k==1 or k==n-1): return int(3*n//2)
        else: return T(n-1, k-1) + T(n-1, k)
    [T(n,int(n//2)) for n in range(41)] # G. C. Greubel, Jun 20 2024

Formula

a(n) = (4*(867*n^4 -11934*n^3 +58705*n^2 -123374*n +95280)*a(n-1) +(6069*n^5 -91817*n^4 + 525005*n^3 -1404375*n^2 +1742414*n -803760 )*a(n-2) +2*(867*n^4 - 11934*n^3 +58705*n^2 -123374*n +95280)*a(n-3) + 4*(n-5)*(867*n^4 - 8534*n^3 +28921*n^2 -39246*n +17712)*a(n-4))/(2*(n+1)*(867*n^4 - 12002*n^3 +59725*n^2 -126158*n +95280)), for n >= 6, with a(0) = a(1) = 1, a(2) = 3, a(3) = 4, and a(4) = 8. - G. C. Greubel, Jun 20 2024

A026633 a(n) = Sum_{k=0..n} A026626(n, k).

Original entry on oeis.org

1, 2, 5, 10, 22, 44, 90, 180, 362, 724, 1450, 2900, 5802, 11604, 23210, 46420, 92842, 185684, 371370, 742740, 1485482, 2970964, 5941930, 11883860, 23767722, 47535444, 95070890, 190141780, 380283562, 760567124, 1521134250
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select n+1 else (17*2^(n-2) +(-1)^n)/3 -1: n in [0..40]]; // G. C. Greubel, Jun 21 2024
    
  • Mathematica
    Table[(17*2^(n-2) +(-1)^n)/3 -1 +Boole[n==0]/4 +Boole[n==1]/2, {n, 0, 40}] (* G. C. Greubel, Jun 21 2024 *)
  • SageMath
    [(17*2^(n-2) +(-1)^n)/3 -1 +int(n==0)/4 +int(n==1)/2 for n in range(41)] # G. C. Greubel, Jun 21 2024

Formula

G.f.: (1+x^4)/((1-2*x)*(1-x^2)). - Ralf Stephan, Apr 30 2004
a(n) = (1/3)*(17*2^(n-2) + (-1)^n) - 1, n>=2. - R. J. Mathar, May 22 2013
a(n) = a(n-1) + 2*a(n-2) + 2. - Greg Dresden, Feb 22 2020
E.g.f.: (3 + 6*x - 8*cosh(x) + 17*cosh(2*x) - 16*sinh(x) + 17*sinh(2*x))/12. - Stefano Spezia, Feb 22 2020
Showing 1-10 of 15 results. Next