cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026964 a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026626.

Original entry on oeis.org

1, 12, 77, 434, 1978, 8830, 37409, 156474, 644305, 2632506, 10684360, 43166246, 173768764, 697596990, 2794438513, 11174809302, 44626341136, 178018744896, 709505830530, 2825762505810, 11247704919634, 44749537493028, 177970696795672, 707580176408854, 2812524327414647
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[3*n/2], T[n-1,k-1] +T[n-1,k]]]; (* T = A026626 *)
    A262964[n_]:= Sum[T[n,k]*T[n,k+3], {k,0,n-3}];
    Table[A262964[n], {n,3,40}] (* G. C. Greubel, Jun 23 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026626
        if (k==0 or k==n): return 1
        elif (k==1 or k==n-1): return int(3*n//2)
        else: return T(n-1, k-1) + T(n-1, k)
    def A262964(n): return sum( T(n,k)*T(n,k+3) for k in range(n-2))
    [A262964(n) for n in range(3,41)] # G. C. Greubel, Jun 23 2024

Extensions

More terms from Sean A. Irvine, Oct 20 2019