A026964 a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026626.
1, 12, 77, 434, 1978, 8830, 37409, 156474, 644305, 2632506, 10684360, 43166246, 173768764, 697596990, 2794438513, 11174809302, 44626341136, 178018744896, 709505830530, 2825762505810, 11247704919634, 44749537493028, 177970696795672, 707580176408854, 2812524327414647
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[3*n/2], T[n-1,k-1] +T[n-1,k]]]; (* T = A026626 *) A262964[n_]:= Sum[T[n,k]*T[n,k+3], {k,0,n-3}]; Table[A262964[n], {n,3,40}] (* G. C. Greubel, Jun 23 2024 *)
-
SageMath
@CachedFunction def T(n, k): # T = A026626 if (k==0 or k==n): return 1 elif (k==1 or k==n-1): return int(3*n//2) else: return T(n-1, k-1) + T(n-1, k) def A262964(n): return sum( T(n,k)*T(n,k+3) for k in range(n-2)) [A262964(n) for n in range(3,41)] # G. C. Greubel, Jun 23 2024
Extensions
More terms from Sean A. Irvine, Oct 20 2019