cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027004 a(n) = T(2*n+1,n+1), T given by A026998.

Original entry on oeis.org

1, 8, 26, 73, 196, 518, 1361, 3568, 9346, 24473, 64076, 167758, 439201, 1149848, 3010346, 7881193, 20633236, 54018518, 141422321, 370248448, 969323026, 2537720633, 6643838876, 17393795998, 45537549121, 119218851368, 312119004986, 817138163593, 2139295485796
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Mathematica
    LucasL[2*Range[0,40] +3] -3 (* G. C. Greubel, Jul 21 2025 *)
  • PARI
    Vec((1+4*x-2*x^2)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 18 2016
    
  • SageMath
    def A027004(n): return lucas_number2(2*n+3,1,-1) -3 # G. C. Greubel, Jul 21 2025

Formula

a(n) = Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3.
a(n) = A002878(n+1) - 3.
From Colin Barker, Feb 18 2016: (Start)
a(n) = 2^(-n)*((2-sqrt(5))*(3-sqrt(5))^n + (2+sqrt(5))*(3+sqrt(5))^n) - 3.
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n > 2.
G.f.: (1+4*x-2*x^2) / ((1-x)*(1-3*x+x^2)). (End)
From G. C. Greubel, Jul 21 2025: (Start)
a(n) = Lucas(2*n+3) - 3.
E.g.f.: 2*exp(3*x/2)*(2*cosh(p*x) + p*sinh(p*x)) - 3*exp(x), where 2*p = sqrt(5). (End)