cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A027053 a(n) = T(n,n+2), T given by A027052.

Original entry on oeis.org

1, 4, 9, 18, 35, 66, 123, 228, 421, 776, 1429, 2630, 4839, 8902, 16375, 30120, 55401, 101900, 187425, 344730, 634059, 1166218, 2145011, 3945292, 7256525, 13346832, 24548653, 45152014, 83047503, 152748174, 280947695, 516743376
Offset: 2

Views

Author

Keywords

Comments

Second differences of (A027026(n)-1)/2.
Pairwise sums of A089068.
a(n) is also the number of fixed polyominoes with n cells of height (or width) 2. - David Bevan, Sep 09 2009

Crossrefs

2nd column of A308359.

Programs

  • GAP
    a:=[1,4,9,18];; for n in [5..30] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 05 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 32); Coefficients(R!( x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019
    
  • Maple
    seq(coeff(series(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2 ..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    LinearRecurrence[{2,0,0,-1}, {1,4,9,18}, 30] (* G. C. Greubel, Nov 05 2019 *)
  • PARI
    my(x='x+O('x^32)); Vec(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 05 2019
    
  • Sage
    def A027053_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))).list()
    a=A027053_list(32); a[2:] # G. C. Greubel, Nov 05 2019
    

Formula

G.f.: x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)).
a(n) = A089068(n-1) + A089068(n).
a(n) = a(n-1) + a(n-2) + a(n-3) + 4. - David Bevan, Sep 09 2009
a(n) = A001590(n+3) - 2. - David Bevan, Sep 09 2009
a(n+1) - a(n) = A000213(n+1). - R. J. Mathar, Aug 04 2013

A027067 a(n) = Sum_{k=n..2*n} T(n,k), T given by A027052.

Original entry on oeis.org

1, 1, 4, 10, 27, 77, 220, 632, 1821, 5257, 15206, 44068, 127951, 372173, 1084382, 3164498, 9248241, 27064057, 79296978, 232597316, 682960523, 2007206245, 5904191878, 17380855190, 51203234981, 150943862857, 445250129556
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n, k), k=n..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n, k], {k,n,2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n, k) for k in (n..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019

Formula

a(n) ~ 3^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 06 2019

A027054 a(n) = T(n, n+3), T given by A027052.

Original entry on oeis.org

1, 8, 23, 52, 107, 210, 401, 754, 1405, 2604, 4811, 8872, 16343, 30086, 55365, 101862, 187385, 344688, 634015, 1166172, 2144963, 3945242, 7256473, 13346778, 24548597, 45151956, 83047443, 152748112, 280947631, 516743310
Offset: 3

Views

Author

Keywords

Programs

  • GAP
    a:=[1,8,23,52,107];; for n in [6..33] do a[n]:=3*a[n-1]-2*a[n-2] -a[n-4]+a[n-5]; od; a; # G. C. Greubel, Nov 05 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 33); Coefficients(R!( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019
    
  • Maple
    seq(coeff(series(x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)), x, n+1), x, n), n = 3..33); # G. C. Greubel, Nov 05 2019
  • Mathematica
    LinearRecurrence[{3,-2,0,-1,1}, {1,8,23,52,107}, 30] (* G. C. Greubel, Nov 05 2019 *)
  • PARI
    my(x='x+O('x^33)); Vec( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ) \\ G. C. Greubel, Nov 05 2019
    
  • Sage
    def A027053_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ).list()
    a=A027053_list(33); a[3:] # G. C. Greubel, Nov 05 2019
    

Formula

From Colin Barker, Feb 19 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5) for n>6.
G.f.: x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)). (End)
a(n) = A001590(n+4) -2*n -4, n>=3. - R. J. Mathar, Jun 15 2020

A027055 a(n) = T(n, n+4), T given by A027052.

Original entry on oeis.org

1, 18, 59, 146, 319, 652, 1281, 2456, 4637, 8670, 16111, 29822, 55067, 101528, 187013, 344276, 633561, 1165674, 2144419, 3944650, 7255831, 13346084, 24547849, 45151152, 83046581, 152747190, 280946647, 516742262, 950438067
Offset: 4

Views

Author

Keywords

Programs

  • GAP
    a:=[1,18,59,146,319,652];; for n in [7..40] do a[n]:=4*a[n-1] -5*a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Nov 06 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 06 2019
    
  • Maple
    seq(coeff(series(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)), x, n+1), x, n), n = 4..40); # G. C. Greubel, Nov 06 2019
  • Mathematica
    LinearRecurrence[{4,-5,2,-1,2,-1}, {1,18,59,146,319,652}, 40] (* G. C. Greubel, Nov 06 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 06 2019
    
  • Sage
    def A027053_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))).list()
    a=A027053_list(40); a[4:] # G. C. Greubel, Nov 06 2019
    

Formula

From Colin Barker, Feb 19 2016: (Start)
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) -a(n-4) +2*a(n-5) -a(n-6) for n>9.
G.f.: x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)).
(End)
a(n) = A001590(n+5) -n*(5+n), n>=4. - R. J. Mathar, Jun 15 2020

A027056 a(n) = A027052(n, 2n-1).

Original entry on oeis.org

0, 2, 4, 8, 18, 42, 102, 256, 658, 1722, 4570, 12264, 33212, 90626, 248892, 687360, 1907506, 5316266, 14873082, 41751944, 117567784, 331979650, 939807344, 2666718976, 7583071868, 21605822594, 61672362872, 176338826728, 505001067346, 1448365610778, 4159725843526, 11962301199744
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( T(n,2*n-1), n=1..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-1], {n,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n,2*n-1) for n in (1..30)] # G. C. Greubel, Nov 06 2019

Formula

Conjecture:b D-finite with recurrence (-n+1)*a(n) +2*(3*n-4)*a(n-1) +(-7*n+3)*a(n-2) +4*(-2*n+13)*a(n-3) +(5*n-29)*a(n-4) +2*(n-2)*a(n-5) +3*(n-5)*a(n-6)=0. - R. J. Mathar, Jun 15 2020
a(n) ~ 3^(n + 3/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

Extensions

More terms from Sean A. Irvine, Oct 22 2019

A027057 a(n) = (1/2) * A027052(n, 2n-1).

Original entry on oeis.org

1, 2, 4, 9, 21, 51, 128, 329, 861, 2285, 6132, 16606, 45313, 124446, 343680, 953753, 2658133, 7436541, 20875972, 58783892, 165989825, 469903672, 1333359488, 3791535934, 10802911297, 30836181436, 88169413364, 252500533673, 724182805389, 2079862921763, 5981150599872
Offset: 2

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( T(n,2*n-1)/2, n=2..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-1]/2, {n,2,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n,2*n-1)/2 for n in (2..30)] # G. C. Greubel, Nov 06 2019

Extensions

More terms from Sean A. Irvine, Oct 22 2019

A027058 a(n) = A027052(n, 2n-2).

Original entry on oeis.org

1, 1, 3, 9, 23, 59, 153, 401, 1063, 2847, 7693, 20947, 57413, 158265, 438467, 1220145, 3408759, 9556815, 26878861, 75815839, 214411865, 607827693, 1726911631, 4916352891, 14022750725, 40066540277, 114666463855, 328662240617
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( T(n,2*n-2), n=1..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-2], {n,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n,2*n-2) for n in (1..30)] # G. C. Greubel, Nov 06 2019

Formula

Conjecture: D-finite with recurrence n*a(n) +(-7*n+4)*a(n-1) +(13*n-10)*a(n-2) +(n-34)*a(n-3) +(-13*n+84)*a(n-4) +(3*n-32)*a(n-5) +(-n+6)*a(n-6) +3*(n-6)*a(n-7)=0. - R. J. Mathar, Jun 15 2020
a(n) ~ 3^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

Extensions

Offset changed to 1 and a(1)=1 prepended to sequence by G. C. Greubel, Nov 06 2019

A027059 a(n) = A027052(n, 2n-3).

Original entry on oeis.org

0, 2, 6, 18, 52, 146, 406, 1126, 3124, 8684, 24202, 67640, 189576, 532786, 1501254, 4240550, 12005780, 34063896, 96844082, 275848044, 787104288, 2249633916, 6439678858, 18460717684, 52994100984, 152323413890, 438363476086
Offset: 2

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( T(n,2*n-3), n=2..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-3], {n,2,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n,2*n-3) for n in (2..30)] # G. C. Greubel, Nov 06 2019

Formula

Conjecture D-finite with recurrence (n+1)*a(n) +2*(-4*n-1)*a(n-1) +(19*n-5)*a(n-2) +6*(-n-5)*a(n-3) +3*(-7*n+41)*a(n-4) +2*(4*n-29)*a(n-5) +(n+1)*a(n-6) +6*(n-5)*a(n-7)=0. - R. J. Mathar, Jun 15 2020
a(n) ~ 3^(n + 5/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A027060 a(n) = T(n,2n-4), T given by A027052.

Original entry on oeis.org

1, 1, 3, 11, 35, 107, 319, 935, 2713, 7825, 22491, 64523, 184945, 530001, 1519151, 4356471, 12501301, 35901325, 103188123, 296844379, 854701935, 2463133311, 7104685935, 20510632575, 59262772629, 171373598341, 495968905267
Offset: 2

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( T(n,2*n-4), n=2..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-4], {n,2,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n,2*n-4) for n in (2..30)] # G. C. Greubel, Nov 06 2019

A027061 a(n) = A027052(n, 2n-5).

Original entry on oeis.org

0, 2, 6, 20, 66, 210, 652, 1988, 5982, 17830, 52782, 155480, 456364, 1336066, 3904280, 11394244, 33222902, 96812174, 282009512, 821327088, 2391918708, 6966267782, 20291422370, 59116724728, 172271893036, 502157965938
Offset: 3

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( T(n,2*n-5), n=3..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-5], {n,3,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n,2*n-5) for n in (3..30)] # G. C. Greubel, Nov 06 2019
Showing 1-10 of 39 results. Next