A027069 a(n) = diagonal sum of left-justified array T given by A027052.
1, 1, 1, 2, 2, 4, 5, 7, 11, 14, 22, 32, 43, 67, 97, 134, 206, 298, 419, 637, 923, 1312, 1978, 2872, 4111, 6161, 8961, 12888, 19232, 28010, 40423, 60129, 87665, 126840, 188216, 274634, 398151, 589689, 861001, 1250210, 1848840, 2700900, 3926839, 5799949, 8476579
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
T:= proc(n, k) option remember; if k<0 or k>2*n then 0 elif k=0 or k=2 or k=2*n then 1 elif k=1 then 0 else add(T(n-1, k-j), j=1..3) fi end: seq( add(T(n-k,k), k=0..n), n=0..50); # G. C. Greubel, Nov 06 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j,3} ]]]]; Table[Sum[T[n-k,k], {k,0,n}], {n, 0, 50}] (* G. C. Greubel, Nov 06 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>2*n): return 0 elif (k==0 or k==2 or k==2*n): return 1 elif (k==1): return 0 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n-k,k) for k in (0..n)) for n in (0..50)] # G. C. Greubel, Nov 06 2019
Formula
a(n) = Sum_{k=0..n} A027052(n - k, k). - Sean A. Irvine, Oct 22 2019
Extensions
More terms from Sean A. Irvine, Oct 22 2019