cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027181 a(n) = Lucas(n+4) - 2*(n+3).

Original entry on oeis.org

1, 3, 8, 17, 33, 60, 105, 179, 300, 497, 817, 1336, 2177, 3539, 5744, 9313, 15089, 24436, 39561, 64035, 103636, 167713, 271393, 439152, 710593, 1149795, 1860440, 3010289, 4870785, 7881132, 12751977, 20633171, 33385212, 54018449, 87403729, 141422248
Offset: 0

Views

Author

Keywords

Comments

Let F be a homogeneous polynomial in n + 4 variables f0, f1, f2, g0, g1, ..., gn, defined as the determinant of a Sylvester matrix of polynomials f2*x^2 + f1*x + f0 and gn*x^n + ... + g1*x + g0. It appears that a(n) is equal to the l1-norm of F, i.e., the sum of absolute values of coefficients of F. - Anton Mosunov, Apr 13 2019

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,n+4)[2] -2*(n+3)); # G. C. Greubel, Jul 24 2019
  • Magma
    [Lucas(n+4) - (2*n+6): n in [0..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,1},{1,3,8,17},40] (* Vladimir Joseph Stephan Orlovsky, Jan 25 2012 *)
    Table[LucasL[n+4]-2*(n+3), {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
  • PARI
    Vec((1 + x^2)/((1 - x)^2*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, Mar 10 2017
    
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+5)+f(n+3)-2*(n+3)) \\ G. C. Greubel, Jul 24 2019
    
  • Sage
    [lucas_number2(n+4,1,-1) -2*(n+3) for n in range(40)] # G. C. Greubel, Apr 14 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} A027170(n-k, k).
G.f.: (1 + x^2)/((1 - x)^2*(1 - x - x^2)).
From Colin Barker, Mar 10 2017: (Start)
a(n) = -4 + (2^(-1-n)*((1-sqrt(5))^n*(-15+7*sqrt(5)) + (1+sqrt(5))^n*(15+7*sqrt(5))))/sqrt(5) - 2*(1+n).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>3.
(End)