A027193 Number of partitions of n into an odd number of parts.
0, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, 29, 37, 52, 66, 90, 113, 151, 190, 248, 310, 400, 497, 632, 782, 985, 1212, 1512, 1851, 2291, 2793, 3431, 4163, 5084, 6142, 7456, 8972, 10836, 12989, 15613, 18646, 22316, 26561, 31659, 37556, 44601, 52743, 62416, 73593, 86809, 102064, 120025, 140736
Offset: 0
Keywords
Examples
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 8*x^7 + 10*x^8 + 16*x^9 + 20*x^10 + ... From _Gus Wiseman_, Feb 11 2021: (Start) The a(1) = 1 through a(8) = 10 partitions into an odd number of parts are the following. The Heinz numbers of these partitions are given by A026424. (1) (2) (3) (4) (5) (6) (7) (8) (111) (211) (221) (222) (322) (332) (311) (321) (331) (422) (11111) (411) (421) (431) (21111) (511) (521) (22111) (611) (31111) (22211) (1111111) (32111) (41111) (2111111) The a(1) = 1 through a(8) = 10 partitions whose greatest part is odd are the following. The Heinz numbers of these partitions are given by A244991. (1) (11) (3) (31) (5) (33) (7) (53) (111) (1111) (32) (51) (52) (71) (311) (321) (322) (332) (11111) (3111) (331) (521) (111111) (511) (3221) (3211) (3311) (31111) (5111) (1111111) (32111) (311111) (11111111) (End)
References
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 39, Example 7.
Links
- T. D. Noe, Table of n, a(n) for n = 0..999
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- D. R. C. Chaves, Um estudo combinatório e comparativo de identidades teta parciais de Andrews e Ramanujan, 2011. In Portuguese.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function p_0(n).
Crossrefs
The even-length version is A027187.
The case of odd maximum as well as length is A340385.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
A026804 counts partitions whose least part is odd.
A072233 counts partitions by sum and length.
A101707 counts partitions of odd positive rank.
Programs
-
Maple
g:=sum(x^(2*k)/product(1-x^j,j=1..2*k-1),k=1..40): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=1..45); # Emeric Deutsch, Apr 05 2006
-
Mathematica
nn=40;CoefficientList[Series[ Sum[x^(2j+1)Product[1/(1- x^i),{i,1,2j+1}],{j,0,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Dec 01 2012 *) a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n], OddQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *) a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n], OddQ[ First@#] &]]; (* Michael Somos, Dec 28 2014 *) a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n + 1], #[[-1]] == 1 && EvenQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *) a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n + 1], EvenQ[ First@#] && (Length[#] < 2 || #[[1]] != #[[2]]) &]]; (* Michael Somos, Dec 28 2014 *)
-
PARI
{a(n) = if( n<1, 0, polcoeff( sum( k=1, n, if( k%2, x^k / prod( j=1, k, 1 - x^j, 1 + x * O(x^(n-k)) ))), n))}; /* Michael Somos, Jul 24 2012 */
-
PARI
q='q+O('q^66); concat([0], Vec( (1/eta(q)-eta(q)/eta(q^2))/2 ) ) \\ Joerg Arndt, Mar 23 2014
Formula
For g.f. see under A027187.
G.f.: Sum(k>=1, x^(2*k-1)/Product(j=1..2*k-1, 1-x^j ) ). - Emeric Deutsch, Apr 05 2006
G.f.: - Sum(k>=1, (-x)^(k^2)) / Product(k>=1, 1-x^k ). - Joerg Arndt, Feb 02 2014
G.f.: Sum(k>=1, x^(k*(2*k-1)) / Product(j=1..2*k, 1-x^j)). - Michael Somos, Dec 28 2014
a(2*n) = A000701(2*n), a(2*n-1) = A046682(2*n-1); a(n) = A000041(n)-A027187(n). - Reinhard Zumkeller, Apr 22 2006
Comments