A027349 Number of partitions of n into distinct odd parts, the least being 1.
1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 4, 4, 5, 6, 6, 6, 8, 8, 9, 9, 11, 12, 13, 13, 16, 17, 18, 19, 22, 24, 25, 27, 30, 33, 35, 37, 41, 46, 47, 51, 56, 61, 64, 69, 75, 82, 86, 92, 100, 109, 114, 122, 133, 143, 151, 161, 174, 187, 198
Offset: 1
Examples
a(17) = 3 because we have [13,3,1], [11,5,1] and [9,7,1]. G.f. = x + x^4 + x^6 + x^8 + x^9 + x^10 + x^11 + x^12 + 2*x^13 + x^14 + 2*x^15 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Abdulaziz Alanazi, Augustine O. Munagi, and Andrew V. Sills, "Overpartitionized" Rogers-Ramanujan type identities, arXiv:2501.17826 [math.CO], 2025. See pp. 5, 13.
- Jason Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 3, with k=1. - _N. J. A. Sloane_, Aug 31 2014
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Programs
-
Maple
N := 100; t1 := series(mul(1+x^(2*k+1),k=1..N),x,N); A027349 := proc(n) coeff(t1,x,n); end;
-
Mathematica
a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^(2i)),{i,1,k}],{k,0,n}],{x,0,n}],x] (* Emanuele Munarini, Apr 08 2011 *) a[ n_] := SeriesCoefficient[ x QHypergeometricPFQ[ {}, {}, x^2, -x^3], {x, 0, n}]; (* Michael Somos, Feb 02 2015 *) nmax = 100; Rest[CoefficientList[Series[x/(1+x) * Product[1+x^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 30 2015 *) (2/((1 + x) QPochhammer[-1, -x]) + O[x]^70)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *)
Formula
G.f.: x*Product_{i>=2} 1+x^(2*i-1). - Emeric Deutsch, Feb 27 2006
G.f.: (Sum_{k>=1} x^(k^2))/Product_{j=1..k-1} 1-x^(2*j). - Emeric Deutsch, Mar 13 2006
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(11/4)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
G.f.: 2/((1 + x)*(-1; -x)inf), where (a; q)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 22 2016
If n > 1, a(n) = A000700(n - 1) - a(n - 1). - Álvar Ibeas, Aug 03 2020
G.f.: x*Sum_{n >= 0} x^(n*(n+2))/Product_{k = 1..n} (1 - x^(2*k)) = x*(1 + x^3) * Sum_{n >= 0} x^(n*(n+4))/Product_{k = 1..n} (1 - x^(2*k)) = x*(1 + x^3)*(1 + x^5) * Sum_{n >= 0} x^(n*(n+6))/ Product_{k = 1..n} (1 - x^(2*k)) = .... - Peter Bala, Jan 15 2021
Comments