A027447 Triangle read by rows: cube of the lower triangular mean matrix.
1, 7, 1, 85, 19, 4, 415, 115, 37, 9, 12019, 3799, 1489, 549, 144, 13489, 4669, 2059, 919, 364, 100, 726301, 268921, 128431, 64171, 30676, 12700, 3600, 3144919, 1227199, 621139, 334699, 178669, 89125, 38025, 11025, 30300391, 12335311, 6527971, 3714811, 2134141, 1187125, 609625, 265825, 78400
Offset: 1
Examples
Triangle begins: 1; 7, 1; 85, 19, 4; 415, 115, 37, 9; 12019, 3799, 1489, 549, 144, ...
Programs
-
Mathematica
rows = 9; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m3 = m.m.m; Table[ fracs = m3[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
-
PARI
tabl(nn) = {my(M = matrix(nn, nn, i, j, if (j<=i, 1/i, 0))^3); for (n=1, nn, my(row = M[n,1..n]); print(denominator(row)*row))} \\ Michel Marcus, Nov 05 2019, edited by M. F. Hasler, Nov 05 2019
-
PARI
A027447_row(n)=denominator(n=(matrix(n,n, i,j, (j<=i)/i)^3)[n,])*n \\ M. F. Hasler, Nov 05 2019
Formula
Let A be the matrix with A[i,j] = 1/i if j <= i, 0 if j > i. Then this table lists the numerators in A^3 when each row is written using the least common denominator. [Edited by M. F. Hasler, Nov 05 2019]
Extensions
More terms from Michel Marcus, Nov 05 2019