cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027457 a(n) = (H(n) - 1)*lcm{1,...,n}, where H(n) is the n-th harmonic number.

Original entry on oeis.org

0, 1, 5, 13, 77, 87, 669, 1443, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 593094837, 604734465, 615819825, 626401305, 14640022575, 14863115445, 75386423001, 76416082401, 232222818803, 235091155703, 6897956948587
Offset: 1

Views

Author

Keywords

Comments

Second column of A027446. - Olivier Gérard, Dec 11 1999
Rows sums of (A002262*A096180). - Eric Desbiaux, Apr 23 2013

Examples

			a(3) = (1/2+1/3)*lcm(2,3) = 5.
		

Crossrefs

Programs

  • Magma
    [(HarmonicNumber(n)-1)*Lcm([1..n]): n in [1..30]]; // Vincenzo Librandi, Dec 14 2016
    
  • Maple
    A027457 := n -> (Psi(n+1)-1+gamma)*lcm(seq(k,k=1..n)): # Peter Luschny, Dec 01 2011
    # alternative:
    A[1]:= 0: L[1]:= 1:
    for n from 1 to 50 do
       L[n+1]:= ilcm(L[n],n+1);
       A[n+1]:= L[n+1]*(A[n]/L[n] + 1/(n+1))
    od:
    seq(A[n],n=1..50); # Robert Israel, Dec 14 2016
  • Mathematica
    a[n_] := (HarmonicNumber[n] - 1)*LCM @@ Range[n]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    a(n) = (sum(i=1, n, 1/i)-1)*lcm([1..n]); \\ Michel Marcus, Jul 23 2022

Formula

Numerators of sequence a[ 2, n ] in (a[ i, j ])^2 where a[ i, j ] = 1/i if j<=i, 0 if j>i. - N. J. A. Sloane, Feb 24 2006
a(n) = (Psi(n+1)-1+gamma)*LCM(n), LCM(n) = lcm{1..n}. - Peter Luschny, Dec 01 2011
a(n+1) = A003418(n+1)*(a(n)/A003418(n)+1/(n+1)). - Robert Israel, Dec 14 2016

Extensions

New name, offset changed to 1, a(1) and a(21)-a(29) added. - Peter Luschny, Dec 01 2011