A027457 a(n) = (H(n) - 1)*lcm{1,...,n}, where H(n) is the n-th harmonic number.
0, 1, 5, 13, 77, 87, 669, 1443, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 593094837, 604734465, 615819825, 626401305, 14640022575, 14863115445, 75386423001, 76416082401, 232222818803, 235091155703, 6897956948587
Offset: 1
Keywords
Examples
a(3) = (1/2+1/3)*lcm(2,3) = 5.
Links
- Robert Israel, Table of n, a(n) for n = 1..2296
Programs
-
Magma
[(HarmonicNumber(n)-1)*Lcm([1..n]): n in [1..30]]; // Vincenzo Librandi, Dec 14 2016
-
Maple
A027457 := n -> (Psi(n+1)-1+gamma)*lcm(seq(k,k=1..n)): # Peter Luschny, Dec 01 2011 # alternative: A[1]:= 0: L[1]:= 1: for n from 1 to 50 do L[n+1]:= ilcm(L[n],n+1); A[n+1]:= L[n+1]*(A[n]/L[n] + 1/(n+1)) od: seq(A[n],n=1..50); # Robert Israel, Dec 14 2016
-
Mathematica
a[n_] := (HarmonicNumber[n] - 1)*LCM @@ Range[n]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Mar 05 2013 *)
-
PARI
a(n) = (sum(i=1, n, 1/i)-1)*lcm([1..n]); \\ Michel Marcus, Jul 23 2022
Formula
Numerators of sequence a[ 2, n ] in (a[ i, j ])^2 where a[ i, j ] = 1/i if j<=i, 0 if j>i. - N. J. A. Sloane, Feb 24 2006
a(n) = (Psi(n+1)-1+gamma)*LCM(n), LCM(n) = lcm{1..n}. - Peter Luschny, Dec 01 2011
Extensions
New name, offset changed to 1, a(1) and a(21)-a(29) added. - Peter Luschny, Dec 01 2011
Comments