cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027469 a(n) = 49*(n-1)*(n-2)/2.

Original entry on oeis.org

49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309, 38220, 40180
Offset: 3

Views

Author

Keywords

Crossrefs

Third diagonal of A027466.
Cf. A162942.

Programs

  • Magma
    [49*(n-1)*(n-2)/2: n in [3..50]]; // Vincenzo Librandi, Aug 25 2011
    
  • Mathematica
    Table[49(n-1)(n-2)/2,{n,3,70}] (* or *) LinearRecurrence[{3,-3,1},{49,147,294},70] (* Harvey P. Dale, Aug 24 2011 *)
  • PARI
    a(n)=49*(n-1)*(n-2)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

Numerators of sequence a[ n, n-2 ] in (a[ i, j ])^3 where a[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(3)=49, a(4)=147, a(5)=294. - Harvey P. Dale, Aug 24 2011
G.f.: 49*x^3/(1-x)^3. - Harvey P. Dale, Aug 24 2011
From Amiram Eldar, Sep 04 2022: (Start)
a(n) = A162942(n-2).
Sum_{n>=3} 1/a(n) = 2/49.
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End)

Extensions

More terms from Harvey P. Dale, Aug 24 2011