A027469 a(n) = 49*(n-1)*(n-2)/2.
49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309, 38220, 40180
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[49*(n-1)*(n-2)/2: n in [3..50]]; // Vincenzo Librandi, Aug 25 2011
-
Mathematica
Table[49(n-1)(n-2)/2,{n,3,70}] (* or *) LinearRecurrence[{3,-3,1},{49,147,294},70] (* Harvey P. Dale, Aug 24 2011 *)
-
PARI
a(n)=49*(n-1)*(n-2)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
Numerators of sequence a[ n, n-2 ] in (a[ i, j ])^3 where a[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(3)=49, a(4)=147, a(5)=294. - Harvey P. Dale, Aug 24 2011
G.f.: 49*x^3/(1-x)^3. - Harvey P. Dale, Aug 24 2011
From Amiram Eldar, Sep 04 2022: (Start)
a(n) = A162942(n-2).
Sum_{n>=3} 1/a(n) = 2/49.
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End)
Extensions
More terms from Harvey P. Dale, Aug 24 2011