cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027476 Third column of A027467.

Original entry on oeis.org

1, 45, 1350, 33750, 759375, 15946875, 318937500, 6150937500, 115330078125, 2114384765625, 38058925781250, 674680957031250, 11806916748046875, 204350482177734375, 3503151123046875000, 59553569091796875000
Offset: 3

Views

Author

Keywords

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), this sequence (q=15).

Programs

  • Magma
    [(n-1)*(n-2)/2 * 15^(n-3): n in [3..20]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    seq((15)^(n-3)*binomial(n-1, 2), n=3..30) # G. C. Greubel, May 13 2021
  • Mathematica
    Table[(n-1)*(n-2)/2 * 15^(n-3), {n, 3, 30}] (* Vincenzo Librandi, Dec 29 2012 *)
  • Sage
    [(15)^(n-3)*binomial(n-1,2) for n in (3..30)] # G. C. Greubel, May 13 2021

Formula

Numerators of sequence a[3,n] in (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = 15^(n-3)*binomial(n-1, 2).
From G. C. Greubel, May 13 2021: (Start)
a(n) = 45*a(n-1) - 675*a(n-2) + 3375*a(n-3).
G.f.: x^3/(1 - 15*x)^3.
E.g.f.: (-2 + (2 - 30*x + 225*x^2)*exp(15*x))/6750. (End)
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=3} 1/a(n) = 30 - 420*log(15/14).
Sum_{n>=3} (-1)^(n+1)/a(n) = 480*log(16/15) - 30. (End)