A027476 Third column of A027467.
1, 45, 1350, 33750, 759375, 15946875, 318937500, 6150937500, 115330078125, 2114384765625, 38058925781250, 674680957031250, 11806916748046875, 204350482177734375, 3503151123046875000, 59553569091796875000
Offset: 3
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..200
- Index entries for linear recurrences with constant coefficients, signature (45,-675,3375).
Crossrefs
Programs
-
Magma
[(n-1)*(n-2)/2 * 15^(n-3): n in [3..20]]; // Vincenzo Librandi, Dec 29 2012
-
Maple
seq((15)^(n-3)*binomial(n-1, 2), n=3..30) # G. C. Greubel, May 13 2021
-
Mathematica
Table[(n-1)*(n-2)/2 * 15^(n-3), {n, 3, 30}] (* Vincenzo Librandi, Dec 29 2012 *)
-
Sage
[(15)^(n-3)*binomial(n-1,2) for n in (3..30)] # G. C. Greubel, May 13 2021
Formula
Numerators of sequence a[3,n] in (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = 15^(n-3)*binomial(n-1, 2).
From G. C. Greubel, May 13 2021: (Start)
a(n) = 45*a(n-1) - 675*a(n-2) + 3375*a(n-3).
G.f.: x^3/(1 - 15*x)^3.
E.g.f.: (-2 + (2 - 30*x + 225*x^2)*exp(15*x))/6750. (End)
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=3} 1/a(n) = 30 - 420*log(15/14).
Sum_{n>=3} (-1)^(n+1)/a(n) = 480*log(16/15) - 30. (End)