A001788
a(n) = n*(n+1)*2^(n-2).
Original entry on oeis.org
0, 1, 6, 24, 80, 240, 672, 1792, 4608, 11520, 28160, 67584, 159744, 372736, 860160, 1966080, 4456448, 10027008, 22413312, 49807360, 110100480, 242221056, 530579456, 1157627904, 2516582400, 5452595200, 11777605632, 25367150592, 54492397568, 116769423360, 249644974080, 532575944704
Offset: 0
The nodes of an integer composition are the partial sums of its elements, seen as relative distances between nodes of a 1-dimensional polygon. For a composition of 7 such as 1+2+1+3, the nodes are 0,1,3,4,7. Their sum (without the last node) is 8. The sum of all nodes of all 2^(7-1)=64 integer compositions of 7 is 672.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Robert Davis and Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
- Herbert Izbicki, Über Unterbäume eines Baumes, Monatshefte fur Mathematik, Vol. 74 (1970), pp. 56-62.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, No. 2 (1946), pp. 187-203.
- Han Mao Kiah, Alexander Vardy, and Hanwen Yao, Efficient Algorithms for the Bee-Identification Problem, arXiv:2212.09952 [cs.IT], 2022.
- Duško Letić, Nenad Cakić, Branko Davidović, Ivana Berković and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, Vol. 2011 (2011), Article 60.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
- John Riordan and N. J. A. Sloane, Correspondence, 1974.
- R. Tosic, D. Masulovic, I. Stojmenovic, J. Brunvoll, B. N. Cyvin and S. J. Cyvin, Enumeration of polyhex hydrocarbons to h = 17, J. Chem. Inf. Comput. Sci., Vol. 35, No. 2 (1995), pp. 181-187.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Idempotent Number.
- Eric Weisstein's World of Mathematics, Halved Cube Graph.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1), this sequence (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
List([0..30], n-> n*(n+1)*2^(n-2)); # G. C. Greubel, Aug 27 2019
-
a001788 n = if n < 2 then n else n * (n + 1) * 2 ^ (n - 2)
a001788_list = zipWith (*) a000217_list $ 1 : a000079_list
-- Reinhard Zumkeller, Jul 11 2014
-
[n*(n+1)*2^(n-2): n in [0..30]]; // G. C. Greubel, Aug 27 2019
-
A001788 := n->n*(n+1)*2^(n-2);
A001788:=-1/(2*z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
-
CoefficientList[Series[x/(1-2x)^3, {x,0,30}], x]
Table[n*(n+1)*2^(n-2), {n,0,30}]
With[{n = 30}, Join[{0}, Times @@@ Thread[{Accumulate[Range[n]], 2^Range[0, n - 1]}]]] (* Harvey P. Dale, Jul 16 2013 *)
LinearRecurrence[{6, -12, 8}, {0, 1, 6}, 30] (* Harvey P. Dale, Jul 16 2013 *)
-
a(n)=if(n<0,0,2^n*n*(n+1)/4)
-
A001788_upto(n)=Vec(x/(1-2*x)^3+O(x^n),-n) \\ for illustration. - M. F. Hasler, Oct 05 2024
-
[n if n < 2 else n * (n + 1) * 2**(n - 2) for n in range(28)] # Zerinvary Lajos, Mar 10 2009
A027472
Third convolution of the powers of 3 (A000244).
Original entry on oeis.org
1, 9, 54, 270, 1215, 5103, 20412, 78732, 295245, 1082565, 3897234, 13817466, 48361131, 167403915, 573956280, 1951451352, 6586148313, 22082967873, 73609892910, 244074908070, 805447196631, 2646469360359, 8661172452084, 28242953648100, 91789599356325, 297398301914493, 960825283108362, 3095992578904722
Offset: 3
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2), this sequence (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[3^(n-3)*Binomial(n-1, 2): n in [3..40]]; // G. C. Greubel, May 12 2021
-
nn=41; Drop[Range[0,nn]!CoefficientList[Series[Exp[x]^3 x^2/2!,{x,0,nn}],x],2] (* Geoffrey Critzer, Oct 03 2013 *)
LinearRecurrence[{9,-27,27}, {1,9,54}, 40] (* G. C. Greubel, May 12 2021 *)
Abs[Take[CoefficientList[Series[1/(1+3x^2)^3,{x,0,60}],x],{1,-1,2}]] (* Harvey P. Dale, Mar 03 2022 *)
-
a(n)=([0,1,0; 0,0,1; 27,-27,9]^(n-3)*[1;9;54])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[3^(n-3)*binomial(n-1,2) for n in range(3, 40)] # Zerinvary Lajos, Mar 10 2009
A038845
3-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Adam Ehrenberg, Joseph T. Iosue, Abhinav Deshpande, Dominik Hangleiter, and Alexey V. Gorshkov, The Second Moment of Hafnians in Gaussian Boson Sampling, arXiv:2403.13878 [quant-ph], 2024. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3), this sequence (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
List([0..30], n-> 4^n*Binomial(n+2,n) ); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+2, 2): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq((n+2)*(n+1)*4^n/2, n=0..30); # Zerinvary Lajos, Apr 25 2007
-
Table[4^n*Binomial[n+2,n], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
-
a(n)=(n+2)*(n+1)<<(2*n-1) \\ Charles R Greathouse IV, Aug 21 2015
-
[4^(n-2)*binomial(n,2) for n in range(2, 30)] # Zerinvary Lajos, Mar 11 2009
A081139
9th binomial transform of (0,0,1,0,0,0,...).
Original entry on oeis.org
0, 0, 1, 27, 486, 7290, 98415, 1240029, 14880348, 172186884, 1937102445, 21308126895, 230127770466, 2447722649502, 25701087819771, 266895911974545, 2745215094595320, 28001193964872264, 283512088894331673
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8), this sequence (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
A081135
5th binomial transform of (0,0,1,0,0,0, ...).
Original entry on oeis.org
0, 0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4), this sequence (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[5^(n-2)*Binomial(n, 2): n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
-
seq(n*(n-1)*5^(n-2)/2, n=0..30); # Zerinvary Lajos, May 03 2007
-
CoefficientList[Series[x^2/(1-5x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{15,-75,125},{0,0,1},30] (* Harvey P. Dale, Sep 13 2017 *)
-
[5^(n-2)*binomial(n,2) for n in range(0, 30)] # Zerinvary Lajos, Mar 12 2009
A081136
6th binomial transform of (0,0,1,0,0,0, ...).
Original entry on oeis.org
0, 0, 1, 18, 216, 2160, 19440, 163296, 1306368, 10077696, 75582720, 554273280, 3990767616, 28298170368, 198087192576, 1371372871680, 9403699691520, 63945157902336, 431629815840768, 2894458765049856, 19296391766999040
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5), this sequence (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[6^n*Binomial(n+2,2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
-
seq(binomial(n, 2)*6^(n-2), n=0..19); # Zerinvary Lajos, May 23 2008
-
nn=20;Range[0,nn]!CoefficientList[Series[x^2/2! Exp[6x],{x,0,nn}],x] (* Geoffrey Critzer, Oct 03 2013 *)
LinearRecurrence[{18,-108,216},{0,0,1},30] (* Harvey P. Dale, Apr 20 2022 *)
-
[6^(n-2)*binomial(n,2) for n in range(0, 21)] # Zerinvary Lajos, Mar 13 2009
A027474
a(n) = 7^(n-2) * C(n,2).
Original entry on oeis.org
1, 21, 294, 3430, 36015, 352947, 3294172, 29647548, 259416045, 2219448385, 18643366434, 154231485954, 1259557135291, 10173346092735, 81386768741880, 645668365352248, 5084638377148953, 39779817891812397, 309398583602985310
Offset: 2
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6), this sequence (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[7^(n-2)* Binomial(n, 2): n in [2..20]]; /* Vincenzo Librandi, Oct 12 2011 */
-
seq(binomial(n, 2)*7^(n-2), n=2..30); # Zerinvary Lajos, Jun 12 2008
-
Table[7^(n-2) Binomial[n,2], {n,2,20}] (* Harvey P. Dale, Sep 25 2011 *)
-
a(n)=7^(n-2)*n*(n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
[7^(n-2)*binomial(n,2) for n in range(2, 21)] # Zerinvary Lajos, Mar 13 2009
A081138
8th binomial transform of (0,0,1,0,0,0, ...).
Original entry on oeis.org
0, 0, 1, 24, 384, 5120, 61440, 688128, 7340032, 75497472, 754974720, 7381975040, 70866960384, 670014898176, 6253472382976, 57724360458240, 527765581332480, 4785074604081152, 43065671436730368, 385057768140177408
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7), this sequence (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
A081140
10th binomial transform of (0,0,1,0,0,0,...).
Original entry on oeis.org
0, 0, 1, 30, 600, 10000, 150000, 2100000, 28000000, 360000000, 4500000000, 55000000000, 660000000000, 7800000000000, 91000000000000, 1050000000000000, 12000000000000000, 136000000000000000, 1530000000000000000
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9), this sequence (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[10^n* Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
-
Table[10^(n-2)*Binomial[n, 2], {n, 0, 30}] (* G. C. Greubel, May 13 2021 *)
A081141
11th binomial transform of (0,0,1,0,0,0,...).
Original entry on oeis.org
0, 0, 1, 33, 726, 13310, 219615, 3382071, 49603708, 701538156, 9646149645, 129687123005, 1711870023666, 22254310307658, 285596982281611, 3624884775112755, 45569980029988920, 568105751040528536
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10), this sequence (q=11),
A081142 (q=12),
A027476 (q=15).
-
[11^(n-2)*Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
seq((11)^(n-2)*binomial(n,2), n=0..30); # G. C. Greubel, May 13 2021
-
LinearRecurrence[{33,-363,1331},{0,0,1},30] (* Harvey P. Dale, Dec 15 2014 *)
-
vector(20, n, n--; 11^(n-2)*binomial(n, 2)) \\ G. C. Greubel, Nov 23 2018
-
[11^(n-2)*binomial(n, 2) for n in range(20)] # G. C. Greubel, Nov 23 2018
Showing 1-10 of 12 results.
Comments