A001788
a(n) = n*(n+1)*2^(n-2).
Original entry on oeis.org
0, 1, 6, 24, 80, 240, 672, 1792, 4608, 11520, 28160, 67584, 159744, 372736, 860160, 1966080, 4456448, 10027008, 22413312, 49807360, 110100480, 242221056, 530579456, 1157627904, 2516582400, 5452595200, 11777605632, 25367150592, 54492397568, 116769423360, 249644974080, 532575944704
Offset: 0
The nodes of an integer composition are the partial sums of its elements, seen as relative distances between nodes of a 1-dimensional polygon. For a composition of 7 such as 1+2+1+3, the nodes are 0,1,3,4,7. Their sum (without the last node) is 8. The sum of all nodes of all 2^(7-1)=64 integer compositions of 7 is 672.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Robert Davis and Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
- Herbert Izbicki, Über Unterbäume eines Baumes, Monatshefte fur Mathematik, Vol. 74 (1970), pp. 56-62.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, No. 2 (1946), pp. 187-203.
- Han Mao Kiah, Alexander Vardy, and Hanwen Yao, Efficient Algorithms for the Bee-Identification Problem, arXiv:2212.09952 [cs.IT], 2022.
- Duško Letić, Nenad Cakić, Branko Davidović, Ivana Berković and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, Vol. 2011 (2011), Article 60.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
- John Riordan and N. J. A. Sloane, Correspondence, 1974.
- R. Tosic, D. Masulovic, I. Stojmenovic, J. Brunvoll, B. N. Cyvin and S. J. Cyvin, Enumeration of polyhex hydrocarbons to h = 17, J. Chem. Inf. Comput. Sci., Vol. 35, No. 2 (1995), pp. 181-187.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Idempotent Number.
- Eric Weisstein's World of Mathematics, Halved Cube Graph.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1), this sequence (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
List([0..30], n-> n*(n+1)*2^(n-2)); # G. C. Greubel, Aug 27 2019
-
a001788 n = if n < 2 then n else n * (n + 1) * 2 ^ (n - 2)
a001788_list = zipWith (*) a000217_list $ 1 : a000079_list
-- Reinhard Zumkeller, Jul 11 2014
-
[n*(n+1)*2^(n-2): n in [0..30]]; // G. C. Greubel, Aug 27 2019
-
A001788 := n->n*(n+1)*2^(n-2);
A001788:=-1/(2*z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
-
CoefficientList[Series[x/(1-2x)^3, {x,0,30}], x]
Table[n*(n+1)*2^(n-2), {n,0,30}]
With[{n = 30}, Join[{0}, Times @@@ Thread[{Accumulate[Range[n]], 2^Range[0, n - 1]}]]] (* Harvey P. Dale, Jul 16 2013 *)
LinearRecurrence[{6, -12, 8}, {0, 1, 6}, 30] (* Harvey P. Dale, Jul 16 2013 *)
-
a(n)=if(n<0,0,2^n*n*(n+1)/4)
-
A001788_upto(n)=Vec(x/(1-2*x)^3+O(x^n),-n) \\ for illustration. - M. F. Hasler, Oct 05 2024
-
[n if n < 2 else n * (n + 1) * 2**(n - 2) for n in range(28)] # Zerinvary Lajos, Mar 10 2009
A075513
Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.
Original entry on oeis.org
1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8
1: 1
2: -1 2
3: 1 -8 9
4: -1 24 -81 64
5: 1 -64 486 -1024 625
6: -1 160 -2430 10240 -15625 7776
7: 1 -384 10935 -81920 234375 -279936 117649
8: -1 896 -45927 573440 -2734375 5878656 -5764801 2097152
9: 1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
[Reformatted by _Wolfdieter Lang_, Oct 12 2022]
-----------------------------------------------------------------------------
p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
- A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.
- Wolfdieter Lang, On a Certain Family of Sidi Polynomials, May 2023.
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Doron S. Lubinsky and Herbert Stahl, Some Explicit Biorthogonal Polynomials, (IN) Approximation Theory XI, (C.K. Chui, M. Neamtu, L. Schumaker, eds.), Nashboro Press, Nashville, 2005, pp. 279-285.
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
-
# Assuming offset 0.
seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
# Alternative:
egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
ser := x -> series(egf(x), x, 12):
row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
-
p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
-
tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013
A027465
Cube of lower triangular normalized binomial matrix.
Original entry on oeis.org
1, 3, 1, 9, 6, 1, 27, 27, 9, 1, 81, 108, 54, 12, 1, 243, 405, 270, 90, 15, 1, 729, 1458, 1215, 540, 135, 18, 1, 2187, 5103, 5103, 2835, 945, 189, 21, 1, 6561, 17496, 20412, 13608, 5670, 1512, 252, 24, 1, 19683, 59049, 78732, 61236, 30618, 10206, 2268
Offset: 0
Example: n = 3 offers 2^3 = 8 different binary vectors (0,0,0), (0,0,1), ..., (1,1,0), (1,1,1). a(3,2) = 9 of the 2^4 = 64 pairs have overlap k = 2: (0,1,1)*(0,1,1) = (1,0,1)*(1,0,1) = (1,1,0)*(1,1,0) = (1,1,1)*(1,1,0) = (1,1,1)*(1,0,1) = (1,1,1)*(0,1,1) = (0,1,1)*(1,1,1) = (1,0,1)*(1,1,1) = (1,1,0)*(1,1,1) = 2.
For example, T(2,1)=6 since there are 6 subsets of {1,2,3,4} that have exactly 1 symmetric pair, namely, {1,4}, {2,3}, {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}.
The present sequence formatted as a triangular array:
1
3 1
9 6 1
27 27 9 1
81 108 54 12 1
243 405 270 90 15 1
729 1458 1215 540 135 18 1
2187 5103 5103 2835 945 189 21 1
6561 17496 20412 13608 5670 1512 252 24 1
...
A013610 formatted as a triangular array:
1
1 3
1 6 9
1 9 27 27
1 12 54 108 81
1 15 90 270 405 243
1 18 135 540 1215 1458 729
1 21 189 945 2835 5103 5103 2187
1 24 252 1512 5670 13608 20412 17496 6561
...
A099097 formatted as a square array:
1 0 0 0 0 0 0 0 0 0 0 ...
3 1 0 0 0 0 0 0 0 0 ...
9 6 1 0 0 0 0 0 0 ...
27 27 9 1 0 0 0 0 ...
81 108 54 12 1 0 0 ...
243 405 270 90 15 1 ...
729 1458 1215 540 135 ...
2187 5103 5103 2835 ...
6561 17496 20412 ...
19683 59049 ...
59049 ...
Cf.
A000244,
A007318,
A013610,
A013610,
A099097,
A027471,
A027472,
A036216,
A036217,
A036219,
A036220,
A036221,
A036222,
A036223.
-
a027465 n k = a027465_tabl !! n !! k
a027465_row n = a027465_tabl !! n
a027465_tabl = iterate (\row ->
zipWith (+) (map (* 3) (row ++ [0])) (map (* 1) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013
-
for i from 0 to 12 do seq(binomial(i, j)*3^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Nov 25 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 3^(n-1)); # Peter Luschny, Oct 09 2022
-
t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 19 2012 *)
-
{T(n, k) = polcoeff( (3 + x)^n, k)}; /* Michael Somos, Feb 14 2002 */
A038845
3-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Adam Ehrenberg, Joseph T. Iosue, Abhinav Deshpande, Dominik Hangleiter, and Alexey V. Gorshkov, The Second Moment of Hafnians in Gaussian Boson Sampling, arXiv:2403.13878 [quant-ph], 2024. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3), this sequence (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
List([0..30], n-> 4^n*Binomial(n+2,n) ); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+2, 2): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq((n+2)*(n+1)*4^n/2, n=0..30); # Zerinvary Lajos, Apr 25 2007
-
Table[4^n*Binomial[n+2,n], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
-
a(n)=(n+2)*(n+1)<<(2*n-1) \\ Charles R Greathouse IV, Aug 21 2015
-
[4^(n-2)*binomial(n,2) for n in range(2, 30)] # Zerinvary Lajos, Mar 11 2009
A036216
Expansion of 1/(1 - 3*x)^4; 4-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 12, 90, 540, 2835, 13608, 61236, 262440, 1082565, 4330260, 16888014, 64481508, 241805655, 892820880, 3252418920, 11708708112, 41712272649, 147219785820, 515269250370, 1789882659180, 6175095174171, 21171754882872
Offset: 0
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2), this sequence (m=3),
A036217 (m=4),
A036219 (m=5),
A036220 (m=6),
A036221 (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n* Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
-
seq(3^n*binomial(n+3, 3), n=0..30)]; # Zerinvary Lajos, Dec 21 2006
-
CoefficientList[Series[1/(1-3x)^4,{x,0,30}],x] (* or *) LinearRecurrence[ {12,-54,108,-81},{1,12,90,540},30] (* Harvey P. Dale, Jul 27 2017 *)
-
a(n) = 3^n*binomial(n+3, 3) \\ Charles R Greathouse IV, Oct 03 2016
-
[3^n*binomial(n+3,3) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
A081139
9th binomial transform of (0,0,1,0,0,0,...).
Original entry on oeis.org
0, 0, 1, 27, 486, 7290, 98415, 1240029, 14880348, 172186884, 1937102445, 21308126895, 230127770466, 2447722649502, 25701087819771, 266895911974545, 2745215094595320, 28001193964872264, 283512088894331673
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8), this sequence (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
A013610
Triangle of coefficients in expansion of (1+3*x)^n.
Original entry on oeis.org
1, 1, 3, 1, 6, 9, 1, 9, 27, 27, 1, 12, 54, 108, 81, 1, 15, 90, 270, 405, 243, 1, 18, 135, 540, 1215, 1458, 729, 1, 21, 189, 945, 2835, 5103, 5103, 2187, 1, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 1, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683
Offset: 0
Triangle begins
1;
1, 3;
1, 6, 9;
1, 9, 27, 27;
1, 12, 54, 108, 81;
1, 15, 90, 270, 405, 243;
1, 18, 135, 540, 1215, 1458, 729;
1, 21, 189, 945, 2835, 5103, 5103, 2187;
Diagonals of the triangle:
A000244 (k=n),
A027471 (k=n-1),
A027472 (k=n-2),
A036216 (k=n-3),
A036217 (k=n-4),
A036219 (k=n-5),
A036220 (k=n-6),
A036221 (k=n-7),
A036222 (k=n-8),
A036223 (k=n-9),
A172362 (k=n-10).
-
a013610 n k = a013610_tabl !! n !! k
a013610_row n = a013610_tabl !! n
a013610_tabl = iterate (\row ->
zipWith (+) (map (* 1) (row ++ [0])) (map (* 3) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013
-
[3^k*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 19 2021
-
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+3*x)^n):
seq(T(n), n=0..10); # Alois P. Heinz, Jul 25 2015
-
t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 4], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = 3T[n-1, k-1]+T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Oliver Seipel, Jan 26 2025 *)
-
{T(n, k) = polcoeff((1 + 3*x)^n, k)}; /* Michael Somos, Feb 14 2002 */
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [1,1], [1,1]]; /* note triple [1,1] */
/* Joerg Arndt, Jul 01 2011 */
-
flatten([[3^k*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021
A081135
5th binomial transform of (0,0,1,0,0,0, ...).
Original entry on oeis.org
0, 0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4), this sequence (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[5^(n-2)*Binomial(n, 2): n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
-
seq(n*(n-1)*5^(n-2)/2, n=0..30); # Zerinvary Lajos, May 03 2007
-
CoefficientList[Series[x^2/(1-5x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{15,-75,125},{0,0,1},30] (* Harvey P. Dale, Sep 13 2017 *)
-
[5^(n-2)*binomial(n,2) for n in range(0, 30)] # Zerinvary Lajos, Mar 12 2009
A081136
6th binomial transform of (0,0,1,0,0,0, ...).
Original entry on oeis.org
0, 0, 1, 18, 216, 2160, 19440, 163296, 1306368, 10077696, 75582720, 554273280, 3990767616, 28298170368, 198087192576, 1371372871680, 9403699691520, 63945157902336, 431629815840768, 2894458765049856, 19296391766999040
Offset: 0
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5), this sequence (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[6^n*Binomial(n+2,2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
-
seq(binomial(n, 2)*6^(n-2), n=0..19); # Zerinvary Lajos, May 23 2008
-
nn=20;Range[0,nn]!CoefficientList[Series[x^2/2! Exp[6x],{x,0,nn}],x] (* Geoffrey Critzer, Oct 03 2013 *)
LinearRecurrence[{18,-108,216},{0,0,1},30] (* Harvey P. Dale, Apr 20 2022 *)
-
[6^(n-2)*binomial(n,2) for n in range(0, 21)] # Zerinvary Lajos, Mar 13 2009
A027474
a(n) = 7^(n-2) * C(n,2).
Original entry on oeis.org
1, 21, 294, 3430, 36015, 352947, 3294172, 29647548, 259416045, 2219448385, 18643366434, 154231485954, 1259557135291, 10173346092735, 81386768741880, 645668365352248, 5084638377148953, 39779817891812397, 309398583602985310
Offset: 2
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3),
A038845 (q=4),
A081135 (q=5),
A081136 (q=6), this sequence (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
[7^(n-2)* Binomial(n, 2): n in [2..20]]; /* Vincenzo Librandi, Oct 12 2011 */
-
seq(binomial(n, 2)*7^(n-2), n=2..30); # Zerinvary Lajos, Jun 12 2008
-
Table[7^(n-2) Binomial[n,2], {n,2,20}] (* Harvey P. Dale, Sep 25 2011 *)
-
a(n)=7^(n-2)*n*(n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
[7^(n-2)*binomial(n,2) for n in range(2, 21)] # Zerinvary Lajos, Mar 13 2009
Showing 1-10 of 43 results.
Comments