A027610 The number of Apollonian networks (planar 3-trees) with n+3 vertices.
1, 1, 1, 3, 7, 24, 93, 434, 2110, 11002, 58713, 321776, 1792133, 10131027, 57949430, 334970205, 1953890318, 11489753730, 68054102361, 405715557048, 2433003221232, 14668536954744, 88869466378593, 540834155878536, 3304961537938269, 20273202069859769
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- L. W. Beineke and R. E. Pippert Enumerating dissectable polyhedra by their automorphism groups, Can. J. Math., 26 (1974), 50-67.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- CombOS - Combinatorial Object Server, generate planar graphs
- S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, Staggered conformers of alkanes: complete solution of the enumeration problem, J. Molec. Struct. 413-414 (1997), 227-239.
- Paul Jungeblut, Edge Guarding Plane Graphs, Master Thesis, Karlsruhe Institute of Technology (Germany, 2019).
- F. Hering et al., The enumeration of stack polytopes and simplicial clusters, Discrete Math., 40 (1982), 203-217.
- Manfred Scheucher, Hendrik Schrezenmaier, Raphael Steiner, A Note On Universal Point Sets for Planar Graphs, arXiv:1811.06482 [math.CO], 2018.
Crossrefs
Programs
-
Maple
A001764 := proc(m) RETURN((3*m)!/(m!*(2*m+1)!)); end; # Gives A001764(m) A047749 := proc(m) local x; if m mod 2 = 1 then x := (m-1)/2; RETURN((3*x+1)!/((x+1)!*(2*x+1)!)); fi; RETURN(A001764(m/2)); end; # Gives A047749(m) A027610 := proc(n) local N; N := 0; N := N + A001764(n)/(12*(n+1)); if n mod 2 = 0 then N := N + 5/24*A001764(n/2); fi; if (n-1) mod 3 = 0 then N := N + 1/3*A001764((n-1)/3); fi; if (n-1) mod 4 = 0 then N := N + 1/4*A001764((n-1)/4); fi; if (n-2) mod 6 = 0 then N := N + 1/6*A001764((n-2)/6); fi; N := N + 3/8*A047749(n); if (2*n-1) mod 3 = 0 then N := N + 1/6*A047749((2*n-1)/3); fi; RETURN(N); end;
-
Mathematica
Table[Binomial[3 n, 2 n]/(6 (2 n + 1) (2 n + 2)) + If[EvenQ[n], 7 Binomial[3 n/2, n]/(12 (n + 1)), 3 Binomial[3 n/2 - 1/2, n]/(4 (n + 1))] + Switch[Mod[n, 3], 1, Binomial[n - 1, 2 n/3 - 2/3]/(2 n/3 + 1/3), 2, Binomial[n - 1, 2 n/3 - 1/3]/(2 n/3 + 2/3), , 0]/3 + If[1 == Mod[n,4], Binomial[3 n/4 - 3/4, n/2 - 1/2]/(n/2 + 1/2), 0]/4 + If[2 == Mod[n, 6], Binomial[n/2 - 1, n/3 - 2/3]/(n/3 + 1/3), 0]/6, {n, 1, 30}] (* _Robert A. Russell, Apr 11 2012 *)
-
PARI
T(m)={if(m<0||denominator(m)!=1,0,(3*m)!/(m!*(2*m+1)!))}; U(k)={if(k<0||denominator(k)!=1,0,if(k%2,my(m=(k-1)/2);(3*m+1)!/((m+1)!*(2*m+1)!),T(k/2)))}; S(n)=T(n)/(12*(n+1))+5*T(n/2)/24+T((n-1)/3)/3+T((n-1)/4)/4+T((n-2)/6)/6+3*U(n)/8+U((2*n-1)/3)/6; for(k=1,26,print1(S(k),", ")) \\ Hugo Pfoertner, Mar 07 2020
Formula
From Robert A. Russell, Mar 20 2024: (Start)
a(n) = C(3n,n)/(6*(2n+1)*(2n+2)) + ([0==n mod 2]*7*C(3n/2,n) + [1==n mod 2]*9*C((3n-1)/2,n)) / (12(n+1)) + [1==n mod 3]*C(n-1,(n-1)/3)/(2n+1) + [2==n mod 3]*C(n-1,(n-2)/3)/(2n+2) + [1==n mod 4]*C((3n-3)/4,(n-1)/2)/(2n+2) + [2==n mod 6]*C(n/2-1,(n-2)/3)/(2n+2).
a(n) = h(3,n) in Table 8 of Hering link.
G.f.: (-16 + 4*G(z) - 2*G(z)^2 + z*G(z)^4 + 14*G(z^2) + 9z*G(z^2)^2 + 8z*G(z^3) + 4z^2*G(z^3)^2 + 6z*G(z^4) + 4z^2*G(z^6))/24, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)
Extensions
One additional term from Robert A. Russell, Apr 11 2012
Noted the name "Apollonian network" by Brendan McKay, Mar 08 2014
New name from Allan Bickle, Feb 21 2024
Comments