cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027615 Number of 1's when n is written in base -2.

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 4, 5, 3, 4, 5, 6, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 3, 4, 2
Offset: 0

Views

Author

Pontus von Brömssen, Nov 14 1997

Keywords

Comments

Base -2 is also called "negabinary".
From Jianing Song, Oct 18 2018: (Start)
Define f(n) as: f(0) = 0, f(-2*n) = f(n), f(-2*n+1) = f(n) + 1, then a(n) = f(n), n >= 0. See A320642 for the other half of f.
For k > 0, the earliest occurrence of k is n = A305750(k).
Conjecture: a(n) != A053737(n) if and only if there exists even k >= 4 such that n mod 2^k >= (5*2^(k+1) + 2)/3. If this holds, then the probability of a random chosen number n to satisfy a(n) != A053737(n) is 1/6. (End)

Examples

			A039724(7) = 11011 which has four 1's, so a(7) = 4.
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 164.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[Quotient[n - 1, -2]] + Mod[n, 2]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jul 23 2023 *)
  • PARI
    a(n) = if(n==0, 0, a(n\(-2))+n%2) /* Jianing Song, Oct 18 2018 */

Formula

a(n) = 3*A072894(n+1) - 2*n - 3. Proof by Nikolaus Meyberg, following a conjecture by Ralf Stephan. - R. J. Mathar, Jan 11 2013
a(n) == n (mod 3). - Jianing Song, Oct 18 2018
a(n) = A000120(A005351(n)). - Michel Marcus, Oct 23 2018