A027624 Number of independent vertex sets in the n-hypercube graph Q_n.
2, 3, 7, 35, 743, 254475, 19768832143
Offset: 0
Examples
a(0) = 2 since {} and {0} are independent vertex sets of Q_0, which is the graph consisting of a single vertex labeled 0. a(1) = 3 since Q_1 = 0---1 has independent vertex sets {}, {0}, {1}. From _Daniel Forgues_, Feb 11-12 2015, Feb 17 2015: (Start) Independent vertex set (resp. vertex cover) of graph G: vertex subset of G such that at most (resp. at least) one vertex represent an edge of G. Vertices of Q_n are adjacent if and only if a single digit differs in the binary representation of their labels, ranging from 0 to 2^n - 1. a(2) = 7 since Q_2 is 00---01 | | 10---11 with vertex adjacency submatrix M_2 = M_1 I_2 M_1 for 0 <= i <= 3 and 0 <= j < i 00 01 10 11 ___________ 00 | 01 | 1 10 | 1 0 11 | 0 1 1 yielding the 1 + 4 trivial: { } and {00}, {01}, {10}, {11}; the 2 (= 0 + (4 - 2) + 0) pairs with adjacency 0: {10, 01}, {11, 00}; for a total of 7 = 1 + 2^2 + 2 independent vertex sets. a(3) = 35 since Q_3 is 000---------001 | \ / | | 100---101 | | | | | | 110---111 | | / \ | 010---------011 with vertex adjacency submatrix M_3 = M_2 I_4 M_2 for 0 <= i <= 7 and 0 <= j < i 000 001 010 011 100 101 110 111 ________________________________ 000 | 001 | 1 010 | 1 0 011 | 0 1 1 100 | 1 0 0 0 101 | 0 1 0 0 1 110 | 0 0 1 0 1 0 111 | 0 0 0 1 0 1 1 yielding the 1 + 8 trivial: { } and {000}, {001}, {010}, {011}, {100}, {101}, {110}, {111}; the 16 (= 2 + (16 - 4) + 2) pairs with adjacency 0: {010, 001}, {011, 000}, {100, 001}, {100, 010}, {100, 011}, {101, 000}, {101, 010}, {101, 011}, {110, 000}, {110, 001}, {110, 011}, {110, 101}, {111, 000}, {111, 001}, {111, 010}, {111, 100}; the 8 triples whose subset pairs are all among the above 16 pairs: {100, 010, 001}, {101, 011, 000}, {110, 011, 000}, {110, 101, 000}, {110, 101, 011}, {111, 010, 001}, {111, 100, 001}, {111, 100, 010}; the 2 quadruples whose subset triples are all among the above 8 triples: {10, 01} & 1 union {11, 00} & 0 = {110, 101, 011, 000} and {10, 01} & 0 union {11, 00} & 1 = {111, 100, 010, 001}; for a total of 35 = 1 + 2^3 + 16 + 8 + 2 independent vertex sets. (End) The above 2 quadruples represent a vertex 2-coloring of Q_3. - _Daniel Forgues_, Feb 17 2015 a(4) = 743 since Q_4 is (...) with vertex adjacency submatrix M_4 = M_3 I_8 M_3 for 0 <= i <= 15 and 0 <= j < i (...) yielding the 1 + 16 trivial: (...); the 88 (= 16 + (64 - 8) + 16) pairs with adjacency 0: (...); the 208 triples: (...); the 228 quadruples: (...); the 128 quintuples: (...); the 56 sextuples: (...); the 16 (= 2 * (8 choose 7)) septuples: (...); and the 2 octuples (representing a vertex 2-coloring of Q_4): {110, 101, 011, 000} & 1 union {111, 100, 010, 001} & 0 = {1101, 1011, 0111, 0001, 1110, 1000, 0100, 0010} and {110, 101, 011, 000} & 0 union {111, 100, 010, 001} & 1 = {1100, 1010, 0110, 0000, 1111, 1001, 0101, 0011}. - _Daniel Forgues_, Feb 17-18 2015
References
- David Galvin, Independent sets in the discrete hypercube, arXiv preprint arXiv:1901.0199, January 2019 [N. J. A. Sloane, Apr 29 2019]
- Ilinca, Liviu, and Jeff Kahn. "Counting maximal antichains and independent sets." Order 30.2 (2013): 427-435.
Links
- David Galvin, Independent sets in the discrete hypercube, 2006.
- Quora, What does the sequence A027624 for "Number of independent vertex sets in the n-hypercube graph Q_n" mean?
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
Crossrefs
Programs
-
Maple
Nbh:= proc(x) local i,n; n:= nops(x); {seq(subsop(i=1-x[i], x), i=1..n)}; end proc: F:= proc(S) option remember; local s, Sp; if nops(S) = 0 then return 1 fi; s:= S[1]; Sp:= S[2..-1]; F(Sp) + F(Sp minus Nbh(s)) end proc: G[0]:= {[]}: a[0]:= F(G[0]): for d from 1 to 6 do G[d]:= map(t -> ([0,op(t)],[1,op(t)]),G[d-1]); a[d]:= F(G[d]); od: seq(a[d],d=0..6); # Robert Israel, Feb 18 2015
-
Mathematica
stableSets[u_, Q_] := If[Length[u] === 0, {{}}, With[{w = First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w] & /@ stableSets[DeleteCases[u, r_ /; r === w || Q[r, w] || Q[w, r]], Q]]]]; Table[Length[stableSets[Subsets[Range[n]], And[Length[#1] + 1 === Length[#2], Complement[#1, #2] === {}] &]], {n, 0, 5}] (* Gus Wiseman, Mar 24 2016 *) Table[Length[Union @@ (Subsets /@ FindIndependentVertexSet[HypercubeGraph[n], Infinity, All])], {n, 0, 5}] (* Eric W. Weisstein, Sep 21 2017 *)
Extensions
Correction of a(0) by Eric W. Weisstein, Jan 04 2014, re-established by M. F. Hasler, Feb 09 2015
Comments