A000431 Expansion of 2*x^3/((1-2*x)^2*(1-4*x)).
0, 0, 0, 2, 16, 88, 416, 1824, 7680, 31616, 128512, 518656, 2084864, 8361984, 33497088, 134094848, 536608768, 2146926592, 8588754944, 34357248000, 137433710592, 549744803840, 2199000186880, 8796044787712, 35184271425536, 140737278640128, 562949517213696
Offset: 0
Examples
From _Petros Hadjicostas_, Aug 08 2019: (Start) We have a(3) = 2 because the permutations 123, 132, 213, 231, 312, and 321 have exactly 0, 1, 0, 1, 0, and 0 peaks, respectively. Also, they have 0, 0, 1, 0, 1, and 0 valleys, respectively. Note that permutations 132 and 231 (each one with 1 peak) are complements of permutations 312 and 213, respectively (each one with 1 valley). Also, a(4) = 16 because 1234 -> 0 peaks and 0 valleys (complement of 4321); 1243 -> 1 peak and 0 valleys (complement of 4312); 1324 -> 1 peak and 1 valley (complement of 4231); 1342 -> 1 peak and 0 valleys (complement of 4213); 1423 -> 1 peak and 1 valley (complement of 4132); 1432 -> 1 peal and 0 valleys (complement of 4123); 2134 -> 0 peaks and 1 valley (complement of 3421); 2143 -> 1 peak and 1 valley (complement of 3412); 2314 -> 1 peak and 1 valley (complement of 3241); 2341 -> 1 peak and 0 valleys (complement of 3214); 2413 -> 1 peak and 1 valley (complement of 3142); 2431 -> 1 peak and 0 valleys (complement of 3124); 3124 -> 0 peaks and 1 valley (complement of 2431); 3142 -> 1 peak and 1 valley (complement of 2413); 3214 -> 0 peaks and 1 valley (complement of 2341); 3241 -> 1 peak and 1 valley (complement of 2314); 3412 -> 1 peak and 1 valley (complement of 2143); 3421 -> 1 peak and 0 valleys (complement of 2134); 4123 -> 0 peaks and 1 valley (complement of 1432); 4132 -> 1 peak and 1 valley (complement of 1423); 4213 -> 0 peaks and 1 valley (complement of 1342); 4231 -> 1 peak and 1 valleys (complement of 1324); 4312 -> 0 peaks and 1 valley (complement of 1243); 4321 -> 0 peaks and 0 valleys (complement of 1234). (End)
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Désiré André, Mémoire sur les séquences des permutations circulaires, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.
- Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 5.
- Nelson H. F. Beebe, The Greek functions: gamma, psi, and zeta, In: The Mathematical-Function Computation Handbook, 2017. See pp. 549-550.
- S. Billey, K. Burdzy, and B. E. Sagan, Permutations with given peak set, arXiv preprint arXiv:1209.0693 [math.CO], 2012.
- S. Billey, K. Burdzy, and B. E. Sagan, Permutations with given peak set, J. Int. Seq. 16 (2013), #13.6.1.
- C. J. Fewster, D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723 [math.CO], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. G. Rieper and M. Zeleke, Valleyless Sequences, arXiv:math/0005180 [math.CO], 2000.
- Index entries for linear recurrences with constant coefficients, signature (8,-20,16)
Programs
-
Magma
[0] cat [(4^n - n*2^(n+1))/8: n in [1..30]]; // Vincenzo Librandi, Feb 18 2015
-
Maple
A000431:=-2/(4*z-1)/(-1+2*z)**2; # Conjectured by Simon Plouffe in his 1992 dissertation. [Proved by Désiré André, 1895, p.154, for circular permutations (see A008303). Peter Luschny, Aug 07 2019] a:= n-> if n=0 then 0 else (Matrix([[2,0,0]]). Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [8,-20,16][i] else 0 fi)^(n-1))[1,3] fi: seq(a(n), n=0..30); # Alois P. Heinz, Aug 26 2008
-
Mathematica
nn = 30; CoefficientList[Series[2*x^3/((1 - 2*x)^2*(1 - 4*x)), {x, 0, nn}], x] (* T. D. Noe, Jun 20 2012 *) Join[{0}, LinearRecurrence[{8, -20, 16}, {0, 0, 2}, 30]] (* Jean-François Alcover, Jan 31 2016 *)
-
PARI
concat(vector(3), Vec(2*x^3/((1-2*x)^2*(1-4*x)) + O(x^40))) \\ Michel Marcus, Jan 31 2016
Formula
From Mitch Harris, Apr 02 2004: (Start)
a(n) = Sum_{1..2^(n+1) - 1} A007814(k).
a(n) = (4^n - n 2^(n+1))/8 for n >= 1.
(End)
a(n) = 2*A100575(n-1). - R. J. Mathar, Mar 14 2011
a(n) = 2^(n-2) * (2^(n-1) - n), n >= 1. - Daniel Forgues, Feb 24 2015
Comments