cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A008303 Triangle read by rows: T(n,k) (n >= 1, 0 <= k <= ceiling(n/2)-1) = number of permutations of [n] with k peaks.

Original entry on oeis.org

1, 2, 4, 2, 8, 16, 16, 88, 16, 32, 416, 272, 64, 1824, 2880, 272, 128, 7680, 24576, 7936, 256, 31616, 185856, 137216, 7936, 512, 128512, 1304832, 1841152, 353792, 1024, 518656, 8728576, 21253376, 9061376, 353792, 2048, 2084864, 56520704, 222398464, 175627264, 22368256
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Aug 06 2019: (Start)
André (1895) first defined these numbers. In his notation, T(n, k) = Q(n+1, 2*(k+1)) for n >= 1 and 0 <= k <= ceiling(n/2)-1.
His triangle is as follows (p. 148):
Q_{2,2}
Q_{3,2}
Q_{4,2} Q_{4,4}
Q_{5,2} Q_{5,4}
Q_{6,2} Q_{6,4} Q_{6,6}
Q_{7,2} Q_{7,4} Q_{7,6}
...
He has Q(n, s) = 0 when either s is odd, or n <= 1, or s > n. Also, Q_{n,2} = 2^(n-2) for n >= 2.
His recurrence is Q(n, s) = s * Q(n-1, s) + (n - s + 1) * Q(n-1, s-2) for n >= 3 and s >= 2. (Obviously, for s odd, we get Q(n, s) = 0 + 0 = 0.)
In terms of the current array, André's (1895) recurrence becomes T(n, k) = (2*k + 2) * T(n-1, k) + (n - 2*k) * T(n-1, k-1) for n >= 2 and 1 <= k <= n with T(n, 0) = 2^(n-1) for n >= 1. In this recurrence, we assume T(n, k) = 0 for k >= ceiling(n/2) or k < 0. (End)
From Petros Hadjicostas, Aug 07 2019: (Start)
We clarify further the quantity Q(n, s) defined by André (1895). In his paper, André considers circular permutations of [n] and deals with maxima, minima, and so-called "séquences" in a permutation.
The term "séquence" in a permutation, as used by André in several of his papers in the 19th century, means a list of consecutive numbers in the permutation that go from a maximum to a minimum, or vice versa, and do not contain any interior minima or maxima. This terminology is also repeated in Ex. 13 (pp. 260-261) by Comtet (even though he refers to the corresponding indices rather than the numbers in the permutation itself).
Some authors call these so-called "séquences" (defined by André and Comtet) "alternate runs" (or just "runs"). Here we are actually dealing with "circular runs" if we read these so-called "séquences" in ascending order in one of the two directions on a circle.
Q(n, s) is the number of circular permutations of [n] (out of the (n-1)! in total) that have exactly s of these so-called "séquences" ("alternate runs").
André (1895) proves that, in a circular permutation of [n], the number of maxima equals the number of minima and that the number of his so-called "séquences" ("alternate runs") is always even (i.e., Q(n, s) = 0 for s odd).
He also shows that, if v = floor(n/2), then the only possible values for the length of a so-called "séquence" ("alternate run") in a circular permutation of [n] are 2, 4, ..., 2*v. That is why Q(n, s) = 0 when either s is odd, or n <= 1, or s > n.
Note that Sum_{t = 1..floor(n/2)} Q_{n, 2*t} = Sum_{t = 1..floor(n/2)} T(n-1, t-1) = (n-1)! = total number of circular permutations of [n].
Since T(n, k) = Q(n+1, 2*(k+1)) for n >= 1 and 0 <= k <= ceiling(n/2)-1, we conclude that the number of (linear) permutations of [n] with k peaks equals the number of circular permutations of [n+1] with exactly 2*(k+1) of these so-called "séquences" ("alternate runs"). (End)
From Petros Hadjicostas, Aug 08 2019: (Start)
The author of this array indirectly assumes that a "peak" of a (linear) permutation of [n] is an interior maximum of the permutation; i.e., we ignore maxima at the endpoints of a permutation.
Similarly, a "valley" of a (linear) permutation of [n] is an interior minimum of the permutation; i.e., we ignore minima at the endpoints of the permutation.
Since the complement of a permutation a_1 a_2 ... a_n (using one-line notation, not cycle notation) is (n+1-a_1) (n+1-a_2) ... (n+1-a_n), it follows that, for n >= 2 and 0 <= k <= ceiling(n/2) - 1, T(n, k) is also the number of (linear) permutations of [n] with exactly k valleys. (End)

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 0) starts as follows:
  [ 1]    1;
  [ 2]    2;
  [ 3]    4,       2;
  [ 4]    8,      16;
  [ 5]   16,      88,      16;
  [ 6]   32,     416,     272;
  [ 7]   64,    1824,    2880,     272;
  [ 8]  128,    7680,   24576,    7936;
  [ 9]  256,   31616,  185856,  137216,    7936;
  [10]  512,  128512, 1304832, 1841152,  353792;
    A000079, A000431, A000487, A000517, A179708, ...
T(3,1) = 2 because we have 132 and 231.
From _Petros Hadjicostas_, Aug 07 2019: (Start)
In terms of André's (1895) notation (see the comments above), we have Q(4, 2) = T(3, 0) = 4 and Q(4, 4) = T(3, 1) = 2.
Out of the (4-1)! = 6 circular permutations of [4], each of the permutations 1324 and 1423 has exactly 4 so-called "séquences" ("alternate runs"), while each of the rest (1234, 1243, 1342, and 1432) has exactly 2 so-called "séquences" ("alternate runs").
In detail, we list the so-called "séquences" ("alternate runs") of the above circular permutations:
  1234 --> 1234 and 41 (maximum 4 and minimum 1).
  1243 --> 124 and 431 (maximum 4 and minimum 1).
  1324 --> 13, 32, 24, and 41 (maxima 3, 4, and minima 1, 2).
  1342 --> 134 and 421 (maximum 4 and minimum 1).
  1423 --> 14, 42, 23, and 31 (maxima 3, 4 and minima 1, 2),
  1432 --> 14 and 4321 (maximum 4 and minimum 1).
(End)
		

References

  • Florence Nightingale David and D. E. Barton, Combinatorial Chance, Charles Griffin, 1962; see Table 10.6, p. 163. [They use the notation T_{N,t^*}^{**}, where N is the length of the permutation and t^* is the number of peaks in the permutation. They also give André's recurrence. So, here n = N and k = t^*. - Petros Hadjicostas, Aug 09 2019]
  • Florence Nightingale David, Maurice George Kendall, and D. E. Barton, Symmetric Functions and Allied Tables, Cambridge, 1966, p. 261, Table 7.3.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.46. - Emeric Deutsch, Jul 26 2009
  • T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 4.

Crossrefs

From Emeric Deutsch, Jul 26 2009: (Start)
Sum of entries in row n is n! = A000142(n).
T(n,0) = 2^(n-1) = A000079(n-1).
T(n,1) = A000431(n).
T(n,2) = A000487(n).
T(n,3) = A000517(n).
T(2n, n-1) = T(2n+1, n) = A000182(n+1) (the tangent numbers). (End)
Columns k = 0-6 give: A011782, A000431, A000487, A000517, A179708, A179709, A179710.

Programs

  • Maple
    # The Maple program yields (by straightforward counting) the generating polynomial of the row n specified in the program.
    n := 8: with(combinat): P := permute(n): st := proc (p) local ct, j: ct := 0: for j from 2 to nops(p)-1 do if p[j-1] < p[j] and p[j+1] < p[j] then ct := ct+1 else end if end do: ct end proc: sort(add(t^st(P[j]), j = 1 .. factorial(n))); # Emeric Deutsch, Jul 26 2009
    # Second Maple program:
    a := 1+sqrt(1-t): b := 1-sqrt(1-t): G := (exp(b*z)-exp(a*z))/(b*exp(a*z)-a*exp(b*z)): Gser := simplify(series(G, z = 0, 15)): for n to 12 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n to 12 do seq(coeff(P[n], t, j), j = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 26 2009
    # Third Maple program:
    b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1,
          add(b(u-j, o+j-1, 0)*x^t, j=1..u)+
          add(b(u+j-1, o-j, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=1..15);  # Alois P. Heinz, May 22 2014
    # Recurrence of D. André (1895).
    T := proc(n, k) option remember;
    if n < 1 or 2*k > (n-1) then return 0 fi;
    if k = 0 then return 2^(n-1) fi;
    (2*k + 2)*T(n-1, k) + (n - 2*k)*T(n-1, k-1) end:
    seq(seq(T(n, k), k=0..(n-1)/2), n=1..12); # Peter Luschny, Aug 06 2019
  • Mathematica
    From Luc Roy, Jul 08 2010: (Start)
    It appears that one-half of the sequence A008303 can be obtained with this Mathematica program:
    Expand[CoefficientList[Simplify[InverseSeries[Integrate[
    Series[(1 + m Sinh[x]^2)^(-1), {x, 0, 15}, {m, 0, 15}], x]]], x]
    Denominator[CoefficientList[Series[Exp[x], {x, 0, 15}], x]]]
    (* Mathematica Output of Luc Roy's program *)
    {0, 1, 0, 2 m, 0, 8 m + 16 m^2, 0, 32 m + 416 m^2 + 272 m^3, 0, 128 m + 7680 m^2 + 24576 m^3 + 7936 m^4, 0, 512 m + 128512 m^2 + 1304832 m^3 + 1841152 m^4 + 353792 m^5, 0, 2048 m + 2084864 m^2 + 56520704 m^3 + 222398464 m^4 + 175627264 m^5 + 22368256 m^6, 0, 8192 m + 33497088 m^2 + 2230947840 m^3 + 20261765120 m^4 + 41731645440 m^5 + 21016670208 m^6 + 1903757312 m^7}
    (End)
    (* Another Mathematica program *)
    m = 14; a = 1 + Sqrt[1 - t]; b = 1 - Sqrt[1 - t];
    g[z_] = (E^(b*z) - E^(a*z))/(b*E^(a*z) - a*E^(b*z));
    gser = Series[g[z], {z, 0, m}];
    Do[p[n]=n!*Coefficient[gser, z, n]//Simplify, {n, 0, m}];
    Flatten[ Table[ Coefficient[p[n], t, j], {n, 0, m}, {j, 0, Ceiling[n/2] - 1}]]
    (* Jean-François Alcover, May 27 2011, after Emeric Deutsch *)
    (* To get the triangle from Jean-François Alcover's Mathematica program *)
    FormTable[Table[Coefficient[p[n], t, j], {n, 0, m}, {j, 0, Ceiling[n/2] - 1}]]
    (* Petros Hadjicostas, Aug 06 2019 *)
    gf := Sqrt[x - 1] Cot[y Sqrt[x - 1]] - 1; ser := Series[1/gf, {y, 0, 16}];
    cy[n_] := n! Coefficient[ser, y, n]; row[n_] := CoefficientList[cy[n], x];
    Table[row[n], {n, 1, 12}] // Flatten (* Peter Luschny, Aug 06 2019 *)
  • PARI
    {T(n, k) = if(n<1, 0, my(z = sqrt(1 - y + y*O(y^(n\2)))); n!*polcoef(polcoef(z/(z - tanh(x*z)), n, x), k))}; /* Michael Somos, May 24 2023 */

Formula

From Emeric Deutsch, Jul 26 2009: (Start)
E.g.f.: G(t,z)=[exp(bz)-exp(az)]/[b*exp(az)-a*exp(bz)], where a+b=2 and ab=t, i.e., a=1+sqrt(1-t), b=1-sqrt(1-t) (see the Goulden-Jackson reference). -
Sum_{k>=0} k*T(n,k) = n!*(n-2)/3 = A090672(n-1).
Row n has ceiling(n/2) terms. (End)
E.g.f.: tan(t*sqrt(x-1))/(sqrt(x-1)-tan(t*sqrt(x-1))) = Sum_{n>=0} P(n,x)*t^n/n! = t + 2*t^2/2! + (4+2*x)*t^3/3! + (8+16*x)*t^4/4! + .... The row generating polynomials P(n,x) satisfy x^(n-1)*P(n,1+1/x^2) = R(n-1,x), where R(n,x) are the row polynomials of A185896. A000670(n) = (3/2)^(n-1)*P(n,8/9). - Peter Bala, Oct 14 2011
From Jinyuan Wang, Dec 28 2020: (Start)
T(n, k) = (n - 2*k + 2)*T(n-1, k-1) + 2*k*T(n-1, k) for n > 1 and k > 1; T(n, 1) = 2^(n - 1); T(1, k) = 0 for k > 1.
T(2*k-1, k) = A000182(k). (End)
From Ammar Khatab, Aug 17 2024: (Start)
T(2*n,k) = 4^(n-k+1)* Sum_{p=0..k} (-1)^p * (2*p+2*n-2*k-1)/(p+2*n-2*k-1) binomial(p+2*n-2*k-1,p) (A008292(2*n,k-p+1)+A008292(2*n,2*n+p-k) ) for n>0.
T(2*n+1,k) = 4^(n-k)* Sum_{p=0..k} (-1)^p * (p+n-k)/(p+2*n-2*k) binomial(p+2*n-2*k,p) (A008292(2*n+1,k-p+1)+A008292(2*n,2*n+p-k+1) ) for k<>n. (End)

Extensions

Additional comments from Emeric Deutsch, May 08 2004
More terms from R. J. Mathar and Vladeta Jovovic, Jun 26 2007
Corrected by Emeric Deutsch, Jul 26 2009
Edited definition - N. J. A. Sloane, May 25 2023

A027624 Number of independent vertex sets in the n-hypercube graph Q_n.

Original entry on oeis.org

2, 3, 7, 35, 743, 254475, 19768832143
Offset: 0

Views

Author

Keywords

Comments

Also the number of vertex covers of Q_n. - Eric W. Weisstein, Jan 04 2014
A. Sapozhenko proved that a(n) ~ 2 * sqrt(e) * 2^(2^(n-1)). See link (Galvin, 2006). - Daniel Forgues, Feb 11 2015
The cardinality of the largest independent vertex set (the vertex independence number) of the n-hypercube graph Q_n is 1 for n = 0, 2^(n-1) for n >= 1. Except for n = 0, there are two such sets (whose elements have binary labels which are bitwise complement of each other) that represent a vertex coloring, with chromatic number 2, of Q_n. - Daniel Forgues, Feb 11 2015, Feb 16-17 2015
Number of independent vertex pairs for Q_n, n >= 1: 2^(n-1) * (2^n - (n+1)) = T_(2^n - 1) - n * 2^(n-1) = L_n - E_n = A006516(n) - A001787(n), where L_n is the number of vertex pairs and E_n is the number of vertex pairs yielding edges. The g.f. is 2 x^2 / ((1-2x)^2 (1-4x)). (A000431(n+1), n >= 1.) - Daniel Forgues, Feb 17 2015
Number of independent vertex sets with 2^(n-1) - 1 items for Q_n: 2^n = 2 * (2^(n-1) choose 2^(n-1) - 1). - Daniel Forgues, Feb 18 2015

Examples

			a(0) = 2 since {} and {0} are independent vertex sets of Q_0, which is the graph consisting of a single vertex labeled 0.
a(1) = 3 since Q_1 = 0---1 has independent vertex sets {}, {0}, {1}.
From _Daniel Forgues_, Feb 11-12 2015, Feb 17 2015: (Start)
Independent vertex set (resp. vertex cover) of graph G: vertex subset of G such that at most (resp. at least) one vertex represent an edge of G.
Vertices of Q_n are adjacent if and only if a single digit differs in the binary representation of their labels, ranging from 0 to 2^n - 1.
a(2) = 7 since Q_2 is
  00---01
  |     |
  10---11
with vertex adjacency submatrix M_2 =
  M_1
  I_2 M_1
for 0 <= i <= 3 and 0 <= j < i
    00 01 10 11
    ___________
00 |
01 | 1
10 | 1  0
11 | 0  1  1
yielding the 1 + 4 trivial: { } and {00}, {01}, {10}, {11};
the 2 (= 0 + (4 - 2) + 0) pairs with adjacency 0: {10, 01}, {11, 00};
for a total of 7 = 1 + 2^2 + 2 independent vertex sets.
a(3) = 35 since Q_3 is
  000---------001
  | \         / |
  |  100---101  |
  |  |       |  |
  |  110---111  |
  | /         \ |
  010---------011
with vertex adjacency submatrix M_3 =
  M_2
  I_4 M_2
for 0 <= i <= 7 and 0 <= j < i
     000 001 010 011 100 101 110 111
     ________________________________
000 |
001 |  1
010 |  1   0
011 |  0   1   1
100 |  1   0   0   0
101 |  0   1   0   0   1
110 |  0   0   1   0   1   0
111 |  0   0   0   1   0   1   1
yielding the 1 + 8 trivial: { } and
  {000}, {001}, {010}, {011}, {100}, {101}, {110}, {111};
the 16 (= 2 + (16 - 4) + 2) pairs with adjacency 0:
  {010, 001}, {011, 000}, {100, 001}, {100, 010},
  {100, 011}, {101, 000}, {101, 010}, {101, 011},
  {110, 000}, {110, 001}, {110, 011}, {110, 101},
  {111, 000}, {111, 001}, {111, 010}, {111, 100};
the 8 triples whose subset pairs are all among the above 16 pairs:
  {100, 010, 001}, {101, 011, 000}, {110, 011, 000}, {110, 101, 000},
  {110, 101, 011}, {111, 010, 001}, {111, 100, 001}, {111, 100, 010};
the 2 quadruples whose subset triples are all among the above 8 triples:
  {10, 01} & 1 union {11, 00} & 0 =
    {110, 101, 011, 000} and
  {10, 01} & 0 union {11, 00} & 1 =
    {111, 100, 010, 001};
for a total of 35 = 1 + 2^3 + 16 + 8 + 2 independent vertex sets. (End)
The above 2 quadruples represent a vertex 2-coloring of Q_3. - _Daniel Forgues_, Feb 17 2015
a(4) = 743 since Q_4 is (...) with vertex adjacency submatrix M_4 =
  M_3
  I_8 M_3
for 0 <= i <= 15 and 0 <= j < i (...) yielding the 1 + 16 trivial: (...);
the 88 (= 16 + (64 - 8) + 16) pairs with adjacency 0: (...);
the 208 triples: (...); the 228 quadruples: (...);
the 128 quintuples: (...); the 56 sextuples: (...);
the 16 (= 2 * (8 choose 7)) septuples: (...);
and the 2 octuples (representing a vertex 2-coloring of Q_4):
  {110, 101, 011, 000} & 1 union {111, 100, 010, 001} & 0 =
    {1101, 1011, 0111, 0001, 1110, 1000, 0100, 0010} and
  {110, 101, 011, 000} & 0 union {111, 100, 010, 001} & 1 =
    {1100, 1010, 0110, 0000, 1111, 1001, 0101, 0011}.
- _Daniel Forgues_, Feb 17-18 2015
		

References

  • David Galvin, Independent sets in the discrete hypercube, arXiv preprint arXiv:1901.0199, January 2019 [N. J. A. Sloane, Apr 29 2019]
  • Ilinca, Liviu, and Jeff Kahn. "Counting maximal antichains and independent sets." Order 30.2 (2013): 427-435.

Crossrefs

Cf. A354802 (by set size), A354082 (alternating sum), A284707 (maximal), A366425 (maximal non-isomorphic).
A000431(n+1), n >= 1. (Number of independent vertex pairs of Q_n.)

Programs

  • Maple
    Nbh:= proc(x)
    local i,n;
    n:= nops(x);
    {seq(subsop(i=1-x[i], x), i=1..n)};
    end proc:
    F:= proc(S) option remember;
       local s, Sp;
       if nops(S) = 0 then return 1 fi;
       s:= S[1];
       Sp:= S[2..-1];
       F(Sp) + F(Sp minus Nbh(s))
    end proc:
    G[0]:= {[]}:
    a[0]:= F(G[0]):
    for d from 1 to 6 do
      G[d]:= map(t -> ([0,op(t)],[1,op(t)]),G[d-1]);
      a[d]:= F(G[d]);
    od:
    seq(a[d],d=0..6); # Robert Israel, Feb 18 2015
  • Mathematica
    stableSets[u_, Q_] := If[Length[u] === 0, {{}}, With[{w = First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w] & /@ stableSets[DeleteCases[u, r_ /; r === w || Q[r, w] || Q[w, r]], Q]]]];
    Table[Length[stableSets[Subsets[Range[n]], And[Length[#1] + 1 === Length[#2], Complement[#1, #2] === {}] &]], {n, 0, 5}] (* Gus Wiseman, Mar 24 2016 *)
    Table[Length[Union @@ (Subsets /@ FindIndependentVertexSet[HypercubeGraph[n], Infinity, All])], {n, 0, 5}] (* Eric W. Weisstein, Sep 21 2017 *)

Extensions

Correction of a(0) by Eric W. Weisstein, Jan 04 2014, re-established by M. F. Hasler, Feb 09 2015

A100575 Half the number of permutations of 0..n with exactly two maxima.

Original entry on oeis.org

0, 0, 1, 8, 44, 208, 912, 3840, 15808, 64256, 259328, 1042432, 4180992, 16748544, 67047424, 268304384, 1073463296, 4294377472, 17178624000, 68716855296, 274872401920, 1099500093440, 4398022393856, 17592135712768, 70368639320064
Offset: 0

Views

Author

Anthony C Robin, Nov 29 2004

Keywords

Comments

Coefficient of the e^(2x) term in the numerator of the n-th derivative of 1/(2-e^x).
This sequence, multiplied by 8, appears in a combinatorial problem about DNA chips. - Bruno Petazzoni (bruno(AT)enix.org), Apr 18 2007

Examples

			a(2)=1 because there are two maxima in 2,0,1 and 1,0,2
		

Crossrefs

Cf. A000431.

Programs

  • Magma
    [4^(n-1)-(n+1)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Jul 18 2019
    
  • Mathematica
    d = Drop[ Flatten[ CoefficientList[ Table[ Simplify[ D[1/(2 - E^x), {x, n}]*(E^x - 2)^(n + 1)/E^x], {n, 2, 24}], E^x]], 1]; a = {}; Do[AppendTo[a, Abs[d[[n(n + 1)/2]]]], {n, 23}]; a (* Robert G. Wilson v, Dec 01 2004 *)
    LinearRecurrence[{8,-20,16},{0,0,1},30] (* Harvey P. Dale, Apr 21 2020 *)
  • Sage
    [2^(n-2)*(2^n -(n+1)) for n in (0..30)] # G. C. Greubel, Mar 21 2022

Formula

From Paul Barry, Jan 28 2005: (Start)
G.f.: x^2/((1-2*x)^2*(1-4*x)).
a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*floor(k/2). (End)
a(n) = 4^(n-1) - (n+1)*2^(n-2). - Bruno Petazzoni (bruno(AT)enix.org), Apr 18 2007
a(n+1) = Sum_{k=0..n} k*2^(2*n-1-k). - Philippe Deléham , Oct 29 2013
E.g.f.: (1/4)*(exp(4*x) - (1 + 2*x)*exp(2*x)). - G. C. Greubel, Mar 21 2022

Extensions

Edited by Robert G. Wilson v, Dec 01 2004
Definition corrected by Bruno Petazzoni (bruno(AT)enix.org), Apr 13 2007
New and simpler definition from R. H. Hardin, Aug 09 2007

A000487 Number of permutations of length n with exactly two valleys.

Original entry on oeis.org

16, 272, 2880, 24576, 185856, 1304832, 8728576, 56520704, 357888000, 2230947840, 13754155008, 84134068224, 511780323328, 3100738912256, 18733264797696, 112949304754176, 680032201605120, 4090088616099840, 24582312700149760, 147669797096652800
Offset: 5

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A008303.

Programs

  • Mathematica
    nn = 30; Drop[CoefficientList[Series[16 x^5 (1 - 3 x)/((1 - 2 x)^3*(1 - 4 x)^2*(1 - 6 x)), {x, 0, nn}], x], 5] (* T. D. Noe, Jun 20 2012 *)

Formula

G.f.: 16x^5(1-3x)/((1-2x)^3*(1-4x)^2*(1-6x)). - Ralf Stephan, Sep 18 2003 [Proved by Désiré André, 1895, p. 154, for circular permutations (see A008303). Peter Luschny, Aug 07 2019]
a(n) = (6^n + (2 - 2n)4^n + (2n^2 - 4n - 1)2^n)/32. - Mitchell Harris, Apr 02 2004

Extensions

More terms from Ralf Stephan, Sep 18 2003

A000517 Number of permutations of length n with exactly three valleys.

Original entry on oeis.org

272, 7936, 137216, 1841152, 21253376, 222398464, 2174832640, 20261765120, 182172651520, 1594922762240, 13684856848384, 115620218667008, 965271355195392, 7984436548730880, 65569731961159680, 535438370914959360, 4353038473793372160, 35266789418949672960
Offset: 7

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A008303.

Programs

  • Mathematica
    nn = 20; Drop[CoefficientList[Series[16 x^7 (17 - 184 x + 636 x^2 - 720 x^3)/((1 - 2 x)^4*(1 - 4 x)^3*(1 - 6 x)^2*(1 - 8 x)), {x, 0, nn}], x], 7] (* T. D. Noe, Jun 20 2012 *)
    LinearRecurrence[{40, -700, 7056, -45360, 194304, -561728, 1082624, -1332224, 946176, -294912}, {272, 7936, 137216, 1841152, 21253376, 222398464, 2174832640, 20261765120, 182172651520, 1594922762240}, 20] (* Jean-François Alcover, Feb 09 2016 *)

Formula

G.f.: 16x^7(17-184x+636x^2-720x^3)/((1-2x)^4*(1-4x)^3*(1-6x)^2*(1-8x)). - Ralf Stephan, Sep 18 2003 [Proved by Désiré André, 1895, p.154, for circular permutations (see A008303). Peter Luschny, Aug 07 2019]

Extensions

More terms from Ralf Stephan, Sep 18 2003

A179708 Number of permutations of 1..n having exactly 5 maxima.

Original entry on oeis.org

0, 7936, 353792, 9061376, 175627264, 2868264960, 41731645440, 559148810240, 7048869314560, 84842998005760, 985278548541440, 11124607890751488, 122829335169859584, 1332091026832097280, 14238886515777208320, 150420440721496473600, 1573853022795658690560
Offset: 8

Views

Author

R. H. Hardin, Jul 25 2010

Keywords

Comments

Number of permutations of length n with exactly four valleys.

Crossrefs

Column k=4 of A008303.

Formula

G.f.: 256*x^9*(31 - 788*x + 8096*x^2 - 43132*x^3 + 126072*x^4 - 192672*x^5 + 120960*x^6)/ ((1-2*x)^5*(1-4*x)^4*(1-6*x)^3*(1-8*x)^2*(1-10*x)). - Ray Chandler, Dec 06 2011

Extensions

More terms from Ray Chandler, Dec 06 2011

A198895 Triangle of coefficients arising in expansion of n-th derivative of tan(x) + sec(x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 5, 2, 1, 8, 18, 16, 5, 1, 16, 58, 88, 61, 16, 1, 32, 179, 416, 479, 272, 61, 1, 64, 543, 1824, 3111, 2880, 1385, 272, 1, 128, 1636, 7680, 18270, 24576, 19028, 7936, 1385, 1, 256, 4916, 31616, 101166, 185856, 206276
Offset: 0

Views

Author

N. J. A. Sloane, Oct 31 2011

Keywords

Comments

From Petros Hadjicostas, Aug 10 2019: (Start)
The recurrence about T(n, k) and the equation that connects T(n, k) to P(n, k) = A059427(n,k), which are given below, appear on p. 159 of the book by David and Barton (1962). The initial conditions, however, for their triangular array S^*{N,t} are slightly different, but there is an agreement starting at t = k = 1. They do not provide tables for S^*{N,t} (that matches the current array T(n, k) for N = n >= 0 and t = k >= 1).
Despite the slightly different initial conditions between T(n, k) and S^*_{N,t} (from p. 159 in the book), the recurrence given below can be proved very easily from the recurrence for the row polynomials R_n(x) given in Shi-Mei Ma (2011, 2012). (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  1
  1   1
  1   2    1
  1   4    5     2
  1   8   18    16      5
  1  16   58    88     61     16
  1  32  179   416    479    272     61
  1  64  543  1824   3111   2880   1385    272
  1 128 1636  7680  18270  24576  19028   7936  1385
  1 256 4916 31616 101166 185856 206276 137216 50521 7936
  ...
		

References

  • Florence Nightingale David and D. E. Barton, Combinatorial Chance, Charles Griffin, 1962; see pp. 159-162.

Crossrefs

Cf. A059427, A098558 (row sums), A000111 (diagonal and 1st subdiagonal), A000340 (column 3) A000431 (column 4), A000363 (column 5)

Formula

n-th row represents the coefficients of the polynomial R_n(x) defined by the recurrence: R_0(x) = 1, R_1(x) = 1 + x, and for n >= 1, R_{n+1}(x) = (1 + n*x^2)*R_n(x) + x*(1 - x^2)*R'_n(x).
From Petros Hadjicostas, Aug 10 2019: (Start)
T(n, k) = (k + 1) * T(n-1, k) + (n - k + 1) * T(n-1, k-2) for n >= 0 and 2 <= k <= n with initial conditions T(n, k=0) = 1 for n >= 0, T(n, k=1) = 2^(n-1) for n >= 1, and T(n, k) = 0 for n < 0 or n < k.
Setting x = 1 in the equation R_{n+1}(x) = (1 + n*x^2)*R_n(x) + x*(1 - x^2)*R'n(x) (valid for n >= 1), we get R{n+1}(1) = (n + 1)*R_n(1) for n >= 1. Since R_1(1) = 2, we have that R_n(1) = 2*n! for n >= 1. Since also R_0(1) = 1, we conclude that Sum_{k = 0..n} T(n,k) = R_n(1) = 2*n! - 0^n = A098558(n) for n >= 0.
Let P(n, k) = A059427(n,k) with P(n, k) = 0 for n <= 1 or n <= k. Then T(n, k) = (1/2)*P(n, k-1) + P(n, k) + (1/2) * P(n, k+1) for n >= 2 and 0 <= k <= n (but this is not true for n = 0 and n = 1). (End)

Extensions

More terms from Max Alekseyev, Feb 17 2012
Showing 1-7 of 7 results.