cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027625 Numerator of n*(n+5)/((n+2)*(n+3)).

Original entry on oeis.org

0, 1, 7, 4, 6, 25, 11, 14, 52, 21, 25, 88, 34, 39, 133, 50, 56, 187, 69, 76, 250, 91, 99, 322, 116, 125, 403, 144, 154, 493, 175, 186, 592, 209, 221, 700, 246, 259, 817, 286, 300, 943, 329, 344, 1078, 375, 391, 1222
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027626 (denominator), A095794, A115067, A179436.

Programs

  • Magma
    [Numerator(n*(n+5)/((n+2)*(n+3))): n in [0..50]]; // Vincenzo Librandi, Mar 04 2014
    
  • Mathematica
    CoefficientList[Series[x*(1+7*x+4*x^2+3*x^3+4*x^4-x^5-x^6-2*x^7)/(1-x^3)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 04 2014 *)
    Numerator[25*Binomial[Range[0, 50]/5 +1, 2]/3] (* G. C. Greubel, Aug 05 2022 *)
  • PARI
    a(n) = numerator(n*(n+5)/6); \\ Altug Alkan, Apr 18 2018
    
  • SageMath
    [numerator(n*(n+5)/6) for n in (0..50)] # G. C. Greubel, Aug 05 2022

Formula

G.f.: x*(1 + 7*x + 4*x^2 + 3*x^3 + 4*x^4 - x^5 - x^6 - 2*x^7)/(1 - x^3)^3.
a(n) = numerator of n*(n+5)/6. - Altug Alkan, Apr 18 2018
From Peter Bala, Aug 06 2022: (Start)
a(n) is quasi-polynomial in n:
a(3*n) = (1/2)*n*(3*n+5) = A115067(n+1).
a(3*n+1) = (1/2)*(n+2)*(3*n+1) = A095794(n+1).
a(3*n+2) = (1/2)*(3*n+2)*(3*n+7) = A179436(n). (End)
Sum_{n>=1} 1/a(n) = 4*Pi/(15*sqrt(3)) + 87/50. - Amiram Eldar, Aug 11 2022