cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027658 a(n) = binomial(n+2, 2) + binomial(n+4, 5).

Original entry on oeis.org

1, 4, 12, 31, 71, 147, 280, 498, 837, 1342, 2068, 3081, 4459, 6293, 8688, 11764, 15657, 20520, 26524, 33859, 42735, 53383, 66056, 81030, 98605, 119106, 142884, 170317, 201811, 237801, 278752, 325160, 377553, 436492, 502572, 576423, 658711, 750139, 851448
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(60 +12*n +7*n^2 +n^3)*Binomial(n+2,2)/60: n in [0..60]]; // G. C. Greubel, Aug 01 2022
    
  • Mathematica
    CoefficientList[Series[(1-2*x+3*x^2-x^3)/(1-x)^6, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    Sum[Binomial[2*j +Range[0, 60], 3*j-1], {j,2}] (* G. C. Greubel, Aug 01 2022 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,4,12,31,71,147},40] (* Harvey P. Dale, Feb 27 2023 *)
  • SageMath
    [(60 +12*n +7*n^2 +n^3)*binomial(n+2,2)/60 for n in (0..60)] # G. C. Greubel, Aug 01 2022

Formula

G.f.: (1 - 2*x + 3*x^2 - x^3)/(1-x)^6. - Colin Barker, Apr 15 2013
From R. J. Mathar, Sep 29 2020: (Start)
a(n) = A000217(n+1) + A000389(n+4)
a(n) = (n+1)*(n+2)*(60 +12*n +7*n^2 +n^3)/120. (End)
From G. C. Greubel, Aug 01 2022: (Start)
a(n) = Sum_{j=1..2} binomial(n+2*j, 3*j-1).
E.g.f.: (1/120)*(120 + 360*x + 300*x^2 + 120*x^3 + 20*x^4 + x^5)*exp(x). (End)