A027697 Odious primes: primes with odd number of 1's in binary expansion.
2, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 79, 97, 103, 107, 109, 127, 131, 137, 151, 157, 167, 173, 179, 181, 191, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 271, 283, 307, 313, 331, 367, 379, 397, 409, 419, 421, 431, 433, 439, 443, 457, 463, 487, 491, 499, 521, 541, 557, 563
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presque premiers, (French) [Sums of digits and almost primes] Math. Ann. 305 (1996), no. 3, 571--599. MR1397437 (97k:11029)
- Ben Green, Three topics in additive prime number theory, arXiv:0710.0823 [math.NT], Oct 03, 2007, pp. 12-27.
- Vladimir Shevelev, Generalized Newman phenomena and digit conjectures on primes, Internat. J. of Mathematics and Math. Sciences, 2008 (2008), Article ID 908045, 1-12.
Crossrefs
Programs
-
Maple
a:=proc(n) local nn: nn:= convert(ithprime(n), base, 2): if `mod`(sum(nn[j], j =1..nops(nn)), 2)=1 then ithprime(n) else end if end proc: seq(a(n),n=1..103); # Emeric Deutsch, Oct 24 2007
-
Mathematica
Clear[BinSumOddQ];BinSumOddQ[a_]:=Module[{i,s=0},s=0;For[i=1,i<=Length[IntegerDigits[a,2]],s+=Extract[IntegerDigits[a,2],i];i++ ];OddQ[s]]; lst={};Do[p=Prime[n];If[BinSumOddQ[p],AppendTo[lst,p]],{n,4!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 06 2009 *) Select[Prime@ Range@ 120, OddQ@ First@ DigitCount[#, 2] &] (* Michael De Vlieger, Feb 08 2016 *)
-
PARI
f(p)={v=binary(p);s=0;for(k=1,#v,if(v[k]==1,s++));return(s%2)}; forprime(p=2, 563, if(f(p), print1(p,", "))) \\ Washington Bomfim, Jan 14 2011
-
PARI
s=[]; forprime(p=2, 1000, if(norml2(binary(p))%2==1, s=concat(s, p))); s \\ Colin Barker, Feb 18 2014
-
Python
from sympy import primerange print([n for n in primerange(1, 1001) if bin(n)[2:].count("1")%2]) # Indranil Ghosh, May 03 2017
Extensions
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
Comments