cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A095005 Number of odious primes (A027697) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 2, 2, 5, 8, 19, 20, 48, 75, 160, 242, 505, 835, 1761, 2799, 5890, 10250, 20921, 36872, 74316, 134816, 267749, 492286, 977207, 1823657, 3598657, 6779899, 13336543, 25358424, 49763462, 95140695, 186504600, 358630024, 702300885, 1356118149, 2654709953, 5142968571
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Prime@ Range[PrimePi[2^n] + 1, PrimePi[2^(n + 1) - 1]], k_ /; OddQ@ First@ DigitCount[k, 2]], {n, 24}] (* Michael De Vlieger, Feb 25 2017 *)
  • PARI
    a(n) = #select(x->((hammingweight(x)%2)==1),primes([2^n+1,2^(n+1)])); \\ Michel Marcus, Feb 26 2017

Formula

a(n) = A036378(n) - A095006(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 20 2024

A177798 First primes of record chains of consecutive primes such that all of them are odious (A027697).

Original entry on oeis.org

2, 7, 167, 199, 6271, 12227, 168713, 579907, 5937157, 6829751, 8059943, 66858173, 167857663, 661416709, 2322857987, 12012698381, 14641587607, 26304771553, 49671709081, 1244930533403, 1922085626009
Offset: 1

Views

Author

Vladimir Shevelev, Dec 12 2010

Keywords

Comments

The corresponding record lengths are: 1,3,6,9,11,15, etc. (A177800).

Crossrefs

Cf. A177748 (evil version), A000069, A001969, A027697, A027699, A177800.

Programs

  • PARI
    back(p,k)=while(k--,p=precprime(p-1));precprime(p-1)
    r=s=0;forprime(p=2,1e9,if(hammingweight(p)%2,s++,if(s>r,r=s;print1(back(p,r)", "));s=0)) \\ Charles R Greathouse IV, Mar 29 2013

Extensions

More terms from D. S. McNeil, Dec 12 2010
a(20)-a(21) from Amiram Eldar, Dec 09 2020

A231254 Odious primes p (A027697) such that p^2 and p^3 are evil (A027699).

Original entry on oeis.org

37, 47, 107, 137, 233, 331, 463, 491, 557, 587, 607, 631, 653, 733, 823, 829, 883, 947, 971, 997, 1153, 1187, 1193, 1231, 1249, 1321, 1327, 1493, 1543, 1567, 1663, 1667, 1669, 1709, 1787, 1801, 1933, 1987, 2011, 2027, 2087, 2143, 2161, 2213, 2269, 2273, 2311
Offset: 1

Views

Author

Keywords

Comments

Sequence {a(n)^4} is a subsequence of A227891 such that a(1)^4 = 1874161 is the smallest power of an odious prime that is in A227891.

Crossrefs

Programs

  • Mathematica
    evilQ[n_]:=EvenQ[DigitCount[n,2][[1]]];
    odiousQ[n_]:=OddQ[DigitCount[n, 2][[1]]];
    Select[Range[2000],PrimeQ[#]&&odiousQ[#]&&evilQ[#^2]&&evilQ[#^3]&] (* Peter J. C. Moses, Nov 08 2013 *)

A360648 Fully multiplicative with a(A027697(k)) = A027699(k) and a(A027699(k)) = A027697(k) for any k > 0.

Original entry on oeis.org

1, 3, 2, 9, 7, 6, 5, 27, 4, 21, 17, 18, 23, 15, 14, 81, 11, 12, 29, 63, 10, 51, 13, 54, 49, 69, 8, 45, 19, 42, 43, 243, 34, 33, 35, 36, 53, 87, 46, 189, 71, 30, 31, 153, 28, 39, 83, 162, 25, 147, 22, 207, 37, 24, 119, 135, 58, 57, 89, 126, 101, 129, 20, 729
Offset: 1

Views

Author

Rémy Sigrist, Feb 15 2023

Keywords

Comments

In other words, we replace odious prime numbers with evil prime numbers and vice versa.
This sequence is a self-inverse permutation of the positive integers.

Examples

			For n = 84:
- 82 = 2^2 * 3 * 7,
- a(2) = a(A027697(1)) = A027699(1) = 3,
- a(3) = a(A027699(1)) = A027697(1) = 2,
- a(7) = a(A027697(2)) = A027699(2) = 5,
- so a(84) = 3^2 * 2 * 5 = 90.
		

Crossrefs

Programs

  • PARI
    See Links section.

A131122 Even numbers that are not the sum of an evil prime (A027699) and an odious prime (A027697).

Original entry on oeis.org

2, 4, 6, 8, 20, 26, 32, 38, 68, 86, 92, 98, 128, 164, 188, 278, 302, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912
Offset: 1

Views

Author

T. D. Noe, Jun 15 2007

Keywords

Comments

Every power of 2 with an odd exponent is a term.
Every pair of primes that sum to 4^k, with k > 1, consists of an evil prime and an odious prime. The smallest example is 16 = 3+13 = 5+11; 3 and 5 are evil, 11 and 13 are odious.

Examples

			32 is here because 32 = 3+29 = 13+19, 3 and 29 are both odious, and 13 and 19 are both evil.
		

Crossrefs

Cf. A004171 (odd powers of 2), A027697, A027699.

Programs

  • PARI
    isok(n) = {if ((n % 2) == 0, forprime(p=3, n, if ((norml2(binary(p))%2==1) && (isprime(q=n-p)) && (!bittest(norml2(binary(q)), 0)), return (0));); return (1);); return(0);}
    lista(nn) = forstep(n=2, nn, 2, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Oct 14 2018

Extensions

a(23)-a(28) from Michel Marcus, Oct 14 2018

A231253 Terms of A227891 of the form (p*q)^2, where p <= q are odious primes (A027697).

Original entry on oeis.org

582169, 797449, 1874161, 1934881, 2007889, 2181529, 3024121, 3171961, 4879681, 5387041, 6775609, 9174841, 11771761, 16072081, 18653761, 19070689, 20894041, 22762441, 25694761, 26635921, 29953729, 31214569, 33166081, 40081561, 42081169, 45873529, 48177481, 49463089, 50367409
Offset: 1

Views

Author

Keywords

Comments

a(1) = 582169 is the smallest term > 1 of A227891 which does not have an evil prime divisor.
The sequence lists numbers of the form (p*q)^2 such that either q > p are both odious primes and among the numbers {p^2, p*q, q^2, p^2*q, q^2*p} there is exactly one odious, or q=p is an odious prime, while p^2 and p^3 are both evil.

Crossrefs

A000069 Odious numbers: numbers with an odd number of 1's in their binary expansion.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128
Offset: 1

Views

Author

Keywords

Comments

This sequence and A001969 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres impies.
Has asymptotic density 1/2, since exactly 2 of the 4 numbers 4k, 4k+1, 4k+2, 4k+3 have an even sum of bits, while the other 2 have an odd sum. - Jeffrey Shallit, Jun 04 2002
Nim-values for game of mock turtles played with n coins.
A115384(n) = number of odious numbers <= n; A000120(a(n)) = A132680(n). - Reinhard Zumkeller, Aug 26 2007
Indices of 1's in the Thue-Morse sequence A010060. - Tanya Khovanova, Dec 29 2008
For any positive integer m, the partition of the set of the first 2^m positive integers into evil ones E and odious ones O is a fair division for any polynomial sequence p(k) of degree less than m, that is, Sum_{k in E} p(k) = Sum_{k in O} p(k) holds for any polynomial p with deg(p) < m. - Pietro Majer, Mar 15 2009
For n>1 let b(n) = a(n-1). Then b(b(n)) = 2b(n). - Benoit Cloitre, Oct 07 2010
Lexicographically earliest sequence of distinct nonnegative integers with no term being the binary exclusive OR of any terms. The equivalent sequence for addition or for subtraction is A005408 (the odd numbers) and for multiplication is A026424. - Peter Munn, Jan 14 2018
Numbers of the form m XOR (2*m+1) for some m >= 0. - Rémy Sigrist, Apr 14 2022

Examples

			For k=2, x=0 and x=0.2 we respectively have 1^2 + 2^2 + 4^2 + 7^2 = 0^2 + 3^2 + 5^2 + 6^2 = 70;
(1.2)^2 + (2.2)^2 + (4.2)^2 + (7.2)^2 = (0.2)^2 + (3.2)^2 + (5.2)^2 + (6.2)^2 = 75.76;
for k=3, x=1.8, we have (2.8)^3 + (3.8)^3 + (5.8)^3 + (8.8)^3 + (9.8)^3 + (12.8)^3 + (14.8)^3 + (15.8)^3 = (1.8)^3 + (4.8)^3 + (6.8)^3 + (7.8)^3 + (10.8)^3 + (11.8)^3 + (13.8)^3 + (16.8)^3 = 11177.856. - _Vladimir Shevelev_, Jan 16 2012
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (in Russian).
  • N. J. A. Sloane, A handbook of Integer Sequences, Academic Press, 1973 (including this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Complement of A001969 (the evil numbers). Cf. A133009.
a(n) = 2*n + 1 - A010060(n) = A001969(n) + (-1)^A010060(n).
First differences give A007413.
Note that A000079, A083420, A002042, A002089, A132679 are subsequences.
See A027697 for primes, also A230095.
Cf. A005408 (odd numbers), A006068, A026424.

Programs

  • Haskell
    a000069 n = a000069_list !! (n-1)
    a000069_list = [x | x <- [0..], odd $ a000120 x]
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Magma
    [ n: n in [1..130] | IsOdd(&+Intseq(n, 2)) ]; // Klaus Brockhaus, Oct 07 2010
    
  • Maple
    s := proc(n) local i,j,k,b,sum,ans; ans := [ ]; j := 0; for i while jA000069 := n->t1[n]; # s(k) gives first k terms.
    is_A000069 := n -> type(add(i,i=convert(n,base,2)),odd):
    seq(`if`(is_A000069(i),i,NULL),i=0..40); # Peter Luschny, Feb 03 2011
  • Mathematica
    Select[Range[300], OddQ[DigitCount[ #, 2][[1]]] &] (* Stefan Steinerberger, Mar 31 2006 *)
    a[ n_] := If[ n < 1, 0, 2 n - 1 - Mod[ Total @ IntegerDigits[ n - 1, 2], 2]]; (* Michael Somos, Jun 01 2013 *)
  • PARI
    {a(n) = if( n<1, 0, 2*n - 1 - subst( Pol(binary( n-1)), x, 1) % 2)}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    {a(n) = if( n<2, n==1, if( n%2, a((n+1)/2) + n-1, -a(n/2) + 3*(n-1)))}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    a(n)=2*n-1-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    [n for n in range(1, 201) if bin(n)[2:].count("1") % 2] # Indranil Ghosh, May 03 2017
    
  • Python
    def A000069(n): return ((m:=n-1)<<1)+(m.bit_count()&1^1) # Chai Wah Wu, Mar 03 2023

Formula

G.f.: 1 + Sum_{k>=0} (t*(2+2t+5t^2-t^4)/(1-t^2)^2) * Product_{j=0..k-1} (1-x^(2^j)), t=x^2^k. - Ralf Stephan, Mar 25 2004
a(n+1) = (1/2) * (4*n + 1 + (-1)^A000120(n)). - Ralf Stephan, Sep 14 2003
Numbers n such that A010060(n) = 1. - Benoit Cloitre, Nov 15 2003
a(2*n+1) + a(2*n) = A017101(n) = 8*n+3. a(2*n+1) - a(2*n) gives the Thue-Morse sequence (1, 3 version): 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, ... A001969(n) + A000069(n) = A016813(n) = 4*n+1. - Philippe Deléham, Feb 04 2004
(-1)^a(n) = 2*A010060(n)-1. - Benoit Cloitre, Mar 08 2004
a(1) = 1; for n > 1: a(2*n) = 6*n-3 -a(n), a(2*n+1) = a(n+1) + 2*n. - Corrected by Vladimir Shevelev, Sep 25 2011
For k >= 1 and for every real (or complex) x, we have Sum_{i=1..2^k} (a(i)+x)^s = Sum_{i=1..2^k} (A001969(i)+x)^s, s=0..k.
For x=0, s <= k-1, this is known as Prouhet theorem (see J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence). - Vladimir Shevelev, Jan 16 2012
a(n+1) mod 2 = 1 - A010060(n) = A010059(n). - Robert G. Wilson v, Jan 18 2012
A005590(a(n)) > 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n)) = -1. - Reinhard Zumkeller, Apr 29 2012
a(n+1) = A006068(n) XOR (2*A006068(n) + 1). - Rémy Sigrist, Apr 14 2022

A014499 Number of 1's in binary representation of n-th prime.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 2, 3, 4, 4, 5, 3, 3, 4, 5, 4, 5, 5, 3, 4, 3, 5, 4, 4, 3, 4, 5, 5, 5, 4, 7, 3, 3, 4, 4, 5, 5, 4, 5, 5, 5, 5, 7, 3, 4, 5, 5, 7, 5, 5, 5, 7, 5, 7, 2, 4, 4, 5, 4, 4, 5, 4, 5, 6, 5, 6, 5, 4, 6, 6, 4, 6, 7, 6, 7, 8, 4, 5, 4, 5, 5, 5, 7, 5, 7, 7, 4, 5, 6, 7, 6, 8, 7, 7, 7, 8, 8, 3, 4
Offset: 1

Views

Author

Ingemar Assarsjo (ingemar(AT)binomen.se)

Keywords

Comments

a(n) is the rank of prime(n) in the base-2 dominance order on the natural numbers. - Tom Edgar, Mar 25 2014

Examples

			From _M. F. Hasler_, Mar 03 2023: (Start)
a(n) = 1 only for p(n = 1) = 2, the only prime equal to a power of 2.
a(n) = 2 for n in A159611 = A000720(A019434) = {2, 3, 7, 55, 6543} (probably complete), the Fermat primes F[k] = 2^2^k + 1 with k = 0, 1, 2, 3, 4. (On the graph one can distinctly see a(6543) = 2 corresponding to F[4] = 65537.)
a(n) = 3 for n in A000720(A081091) = (4, 5, 6, 8, 12, 13, 19, 21, 25, 32, 33, 44, 98, 106, 116, 136, 174, 191, 310, 313, 319, 565, 568, ...). (End)
		

Crossrefs

Cf. A180024. - Reinhard Zumkeller, Aug 08 2010
Cf. A072084.
Cf. A159611 (indices of 2s), A000720(A081091) (indices of 3s). - M. F. Hasler, Mar 03 2023

Programs

  • Haskell
    a014499 = a000120 . a000040  -- Reinhard Zumkeller, Feb 10 2013
    
  • Magma
    [&+Intseq(NthPrime(n), 2): n in [1..100] ]; // Vincenzo Librandi, Mar 25 2014
    
  • Mathematica
    Table[Plus @@ IntegerDigits[Prime[n], 2], {n, 1, 100}] (* Vincenzo Librandi, Mar 25 2014 *)
  • PARI
    A014499(n)=hammingweight(prime(n)) \\ M. F. Hasler, Nov 20 2009, updated Mar 03 2023
    
  • Python
    from sympy import prime
    def A014499(n): return prime(n).bit_count() # Chai Wah Wu, Mar 22 2023
  • Sage
    [sum(i.digits(base=2)) for i in primes_first_n(200)] # Tom Edgar, Mar 25 2014
    

Formula

a(n) = A000120(A000040(n)).
a(A049084(A061712(n))) = n. - Reinhard Zumkeller, Feb 10 2013
a(n) = [x^prime(n)] (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018

A027699 Evil primes: primes with even number of 1's in their binary expansion.

Original entry on oeis.org

3, 5, 17, 23, 29, 43, 53, 71, 83, 89, 101, 113, 139, 149, 163, 197, 257, 263, 269, 277, 281, 293, 311, 317, 337, 347, 349, 353, 359, 373, 383, 389, 401, 449, 461, 467, 479, 503, 509, 523, 547, 571, 593, 599, 619, 643, 673, 683, 691, 739, 751, 773, 797, 811
Offset: 1

Views

Author

Keywords

Comments

Comment from Vladimir Shevelev, Jun 01 2007: Conjecture: If pi_1(m) is the number of a(n) not exceeding m and pi_2(m) is the number of A027697(n) not exceeding m then pi_1(m) <= smaller than pi_2(m) for all natural m except m=5 and m=6. I verified this conjecture up to 10^9. Moreover I conjecture that pi_2(m)-pi_1(m) tends to infinity with records at the primes m=2, 13, 41, 61, 67, 79, 109, 131, 137, ...

Crossrefs

Cf. A001969 (evil numbers), A129771 (evil odd numbers)
Cf. A130911 (prime race between evil primes and odious primes).

Programs

  • Mathematica
    Select[Prime[Range[200]], EvenQ[Count[IntegerDigits[ #,2],1]]&] (* T. D. Noe, Jun 12 2007 *)
  • PARI
    forprime(p=1,999,norml2(binary(p))%2 || print1(p","))
    
  • PARI
    isA027699(p)=isprime(p) && !bittest(norml2(binary(p)),0) \\ M. F. Hasler, Dec 12 2010
    
  • Python
    from sympy import isprime
    def ok(n): return bin(n).count("1")%2 == 0 and isprime(n)
    print([k for k in range(812) if ok(k)]) # Michael S. Branicky, Jun 27 2022

Extensions

More terms from Erich Friedman

A091206 Primes whose binary representation encodes a polynomial irreducible over GF(2).

Original entry on oeis.org

2, 3, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 97, 103, 109, 131, 137, 157, 167, 191, 193, 211, 229, 239, 241, 283, 313, 379, 397, 419, 433, 463, 487, 499, 557, 563, 587, 601, 607, 613, 617, 631, 647, 661, 677, 701, 719, 757, 761, 769, 787, 827, 859
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Subsequence with Hamming weight nonprime starts 2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, ... [Joerg Arndt, Nov 01 2013]. These are now given by A255569. - Antti Karttunen, May 14 2015

Crossrefs

Intersection of A014580 and A000040.
Apart from a(2) = 3 a subsequence of A027697. The numbers in A027697 but not here are listed in A238186.
Also subsequence of A235045 (its primes. Cf. also A235041-A235042).
Cf. A091209 (Primes whose binary expansion encodes a polynomial reducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)), A257688 (either 1, prime or irreducible over GF(2)).
Subsequence: A255569.

Programs

  • Mathematica
    okQ[p_] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id] - 1]; IrreduciblePolynomialQ[pol, Modulus -> 2]];
    Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 06 2023 *)
  • PARI
    is(n)=polisirreducible( Mod(1,2) * Pol(digits(n,2)) );
    forprime(n=2,10^3,if (is(n), print1(n,", ")));
    \\ Joerg Arndt, Nov 01 2013

Formula

a(n) = A000040(A091207(n)) = A014580(A091208(n)).
Showing 1-10 of 40 results. Next