cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 79 results. Next

A095375 Total number of 1's in the binary expansions of the first n primes: summatory A014499.

Original entry on oeis.org

1, 3, 5, 8, 11, 14, 16, 19, 23, 27, 32, 35, 38, 42, 47, 51, 56, 61, 64, 68, 71, 76, 80, 84, 87, 91, 96, 101, 106, 110, 117, 120, 123, 127, 131, 136, 141, 145, 150, 155, 160, 165, 172, 175, 179, 184, 189, 196, 201, 206, 211, 218, 223, 230, 232, 236, 240, 245, 249, 253
Offset: 1

Views

Author

Labos Elemer, Jun 07 2004

Keywords

Examples

			n=4: first 4 primes={10,11,101,111}, with a(4)=8 digits 1.
		

Crossrefs

Programs

  • Maple
    read("transforms") :
    A095375 := proc(n)
        local a;
        a := 0 ;
        for i from 1 to n do
            a := a+wt(ithprime(i)) ;
        end do:
    end proc: # R. J. Mathar, Jul 13 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)
          +add(i, i=Bits[Split](ithprime(n))))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 26 2021
  • Mathematica
    lib[x_] :=Count[IntegerDigits[x, 2], 1] {s=0, ta=Table[0, {256}]}; Do[s=s+lib[Prime[n]]; ta[[n]]=s, {n, 1, 256}] ta
  • PARI
    a(n)=my(s);forprime(p=2,prime(n),s+=hammingweight(p));s \\ Charles R Greathouse IV, Mar 29 2013
    
  • Python
    from sympy import primerange, prime
    def A095375(n): return sum(p.bit_count() for p in primerange(prime(n)+1)) # Chai Wah Wu, Nov 12 2024

A372686 Sorted list of positions of first appearances in A014499 (number of ones in binary expansion of each prime).

Original entry on oeis.org

1, 2, 4, 9, 11, 31, 64, 76, 167, 309, 502, 801, 1028, 6363, 7281, 12079, 12251, 43237, 43390, 146605, 291640, 951351, 1046198, 2063216, 3957778, 11134645, 14198321, 28186247, 54387475, 105097565, 249939829, 393248783, 751545789, 1391572698, 2182112798, 8242984130
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The unsorted version is A372517.

Examples

			The sequence contains 9 because the first 9 terms of A014499 are 1, 2, 2, 3, 3, 3, 2, 3, 4, and the last of these is the first position of 4.
		

Crossrefs

Positions of first appearances in A014499.
The unsorted version is A372517.
For binary length we have A372684, primes A104080, firsts of A035100.
Taking primes gives A372685, unsorted version A061712.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A029837 gives greatest binary index, least A001511.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of each prime, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives length of binary expansion (number of bits).
A372471 lists binary indices of primes.

Programs

  • Mathematica
    First/@GatherBy[Range[1000],DigitCount[Prime[#],2,1]&]

Formula

prime(a(n)) = A372685(n).

Extensions

a(26)-a(36) from Pontus von Brömssen, May 15 2024

A162720 A014499 represented in binary.

Original entry on oeis.org

1, 10, 10, 11, 11, 11, 10, 11, 100, 100, 101, 11, 11, 100, 101, 100, 101, 101, 11, 100, 11, 101, 100, 100, 11, 100, 101, 101, 101, 100, 111, 11, 11, 100, 100, 101, 101, 100, 101, 101, 101, 101, 111, 11, 100, 101, 101, 111, 101, 101, 101, 111, 101, 111, 10
Offset: 1

Views

Author

Ben Branman, Jul 11 2009

Keywords

Examples

			The 5th prime number is 11. The binary representation of 11 is 1011. There are 3 "1s" in 1011. 3 in binary is 11, so a(5)=3.
		

Crossrefs

Programs

  • PARI
    a(n)={fromdigits(digits(hammingweight(prime(n)), 2))} \\ Andrew Howroyd, Nov 08 2019

Formula

a(n) = A007088(A014499(n)). - Andrew Howroyd, Nov 08 2019

Extensions

Terms a(32) and beyond from Andrew Howroyd, Nov 08 2019

A345335 Primes p such that A014499(k) / A000120(k) is an integer, where k = A000720(p).

Original entry on oeis.org

2, 3, 5, 7, 19, 23, 29, 41, 53, 67, 71, 73, 83, 89, 97, 113, 131, 139, 193, 197, 211, 269, 281, 283, 311, 317, 337, 347, 349, 353, 359, 373, 389, 479, 503, 521, 523, 547, 563, 587, 593, 601, 647, 661, 691, 719, 739, 839, 857, 863, 881, 887, 929, 937, 983, 1013
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 14 2021

Keywords

Comments

A014499(k) / A000120(k) = 1 gives A072439.

Examples

			prime(8) = 19, A014499(8)/A000120(8) = 3, thus 19 is a term.
		

Crossrefs

Programs

  • Maple
    R:= NULL: p:= 1: count:= 0:
    for n from 1 while count < 100 do
      p:= nextprime(p);
      if convert(convert(p,base,2),`+`) mod convert(convert(n,base,2),`+`) = 0 then R:= R,p; count:= count+1 fi;
    od:
    R; # Robert Israel, Apr 21 2025
  • Mathematica
    Select[Range[1000], PrimeQ[#] && Divisible @@ DigitCount[{#, PrimePi[#]}, 2, 1] &] (* Amiram Eldar, Jun 14 2021 *)
  • PARI
    isok(p) = isprime(p) && ((hammingweight(p) % hammingweight(primepi(p))) == 0); \\ Michel Marcus, Jun 14 2021

A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0

Views

Author

Keywords

Comments

Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024

Examples

			14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
  0
  1
  2 3
  3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.

Programs

  • Haskell
    a029931 = sum . zipWith (*) [1..] . a030308_row
    -- Reinhard Zumkeller, Feb 28 2014
    
  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 0,
    ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
    seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
  • Mathematica
    a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
  • PARI
    for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022
    (C#)
    ulong A029931(ulong n) {
        ulong result = 0, counter = 1;
        while(n > 0) {
            if (n % 2 == 1)
              result += counter;
            counter++;
            n /= 2;
        }
        return result;
    } // Frank Hollstein, Jan 07 2023

Formula

a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016

Extensions

More terms from Erich Friedman

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A061712 Smallest prime with Hamming weight n (i.e., with exactly n 1's when written in binary).

Original entry on oeis.org

2, 3, 7, 23, 31, 311, 127, 383, 991, 2039, 3583, 6143, 8191, 73727, 63487, 129023, 131071, 522239, 524287, 1966079, 4128767, 16250879, 14680063, 33546239, 67108351, 201064447, 260046847, 536739839, 1073479679, 5335154687, 2147483647, 8581545983, 16911433727, 32212254719
Offset: 1

Views

Author

Alexander D. Healy, Jun 19 2001

Keywords

Comments

a(n) = 2^n - 1 for n in A000043, so Mersenne primes A000668 is a subsequence of this one. Binary length of a(n) is given by A110699 and the number of zeros in a(n) is given by A110700. - Max Alekseyev, Aug 03 2005
Drmota, Mauduit, & Rivat prove that a(n) exists for n > N for some N. - Charles R Greathouse IV, May 17 2010

Examples

			The fourth term is 23 (10111 in binary), since no prime less than 23 has exactly 4 1's in its binary representation.
		

Crossrefs

Programs

  • Haskell
    a061712 n = fromJust $ find ((== n) . a000120) a000040_list
    -- Reinhard Zumkeller, Feb 10 2013
    
  • Maple
    with(combstruct):
    a:=proc(n) local m,is,s,t,r; if n=1 then return 2 fi; r:=+infinity; for m from 0 to 100 do is := iterstructs(Combination(n-2+m),size=n-2); while not finished(is) do s := nextstruct(is); t := 2^(n-1+m)+1+add(2^i,i=s); # print(s,t);
    if isprime(t) then r:=min(t,r) fi; od; if r<+infinity then return r fi; od; return 0; end: seq(a(n),n=1..60); # Max Alekseyev, Aug 03 2005
  • Mathematica
    Do[k = 1; While[ Count[ IntegerDigits[ Prime[k], 2], 1] != n, k++ ]; Print[ Prime[k]], {n, 1, 30} ]
    (* Second program: *)
    a[n_] := Module[{m, s, k, p}, For[m=0, True, m++, s = {1, Sequence @@ #, 1} & /@ Permutations[Join[Table[1, {n-2}], Table[0, {m}]]] // Sort; For[k=1, k <= Length[ s], k++, p = FromDigits[s[[k]], 2]; If[PrimeQ[p], Print["a(", n, ") = ", p]; Return[p]]]]]; a[1] = 2; Array[a, 100] (* Jean-François Alcover, Mar 16 2015 *)
    Module[{hw=Table[{n,DigitCount[n,2,1]},{n,Prime[Range[250*10^6]]}]}, Table[ SelectFirst[hw,#[[2]]==k&],{k,31}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 01 2019 *)
  • PARI
    a(n)=forprime(p=2, , if (hammingweight(p) == n, return(p));); \\ Michel Marcus, Mar 16 2015
    
  • Python
    from itertools import combinations
    from sympy import isprime
    def A061712(n):
        l, k = n-1, 2**n
        while True:
            for d in combinations(range(l-1,-1,-1),l-n+1):
                m = k-1 - sum(2**(e) for e in d)
                if isprime(m):
                    return m
            l += 1
            k *= 2 # Chai Wah Wu, Sep 02 2021

Formula

Conjecture: a(n) < 2^(n+3). - T. D. Noe, Mar 14 2008
A000120(a(n)) = A014499(A049084(a(n))) = n. - Reinhard Zumkeller, Feb 10 2013

Extensions

Extended to 60 terms by Max Alekseyev, Aug 03 2005
Further terms from T. D. Noe, Mar 14 2008

A104080 Smallest prime >= 2^n.

Original entry on oeis.org

2, 2, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659
Offset: 0

Views

Author

Cino Hilliard, Mar 03 2005

Keywords

Crossrefs

Except initial terms and offset, same as A014210 and A203074.
The opposite (greatest prime <= 2^n) is A014234, indices A007053.
The distance from 2^n is A092131, opposite A013603.
Counting zeros instead of both bits gives A372474, cf. A035103, A211997.
Counting ones instead of both bits gives A372517, cf. A014499, A061712.
For squarefree instead of prime we have A372683, cf. A143658, A372540.
The indices of these prime are given by A372684.

Programs

Formula

a(n) = A014210(n), n <> 1. - R. J. Mathar, Oct 14 2008
Sum_{n >= 0} 1/a(n) = A338475 + 1/6 = 1.4070738... (because 1/6 = 1/2 - 1/3). - Bernard Schott, Nov 01 2020
From Gus Wiseman, Jun 03 2024: (Start)
a(n) = A007918(2^n).
a(n) = 2^n + A092131(n).
a(n) = prime(A372684(n)).
(End)

A372429 Sum of binary indices of prime(n). Sum of positions of ones in the reversed binary expansion of prime(n).

Original entry on oeis.org

2, 3, 4, 6, 7, 8, 6, 8, 11, 13, 15, 10, 11, 13, 16, 15, 18, 19, 10, 13, 12, 17, 15, 17, 14, 17, 19, 20, 21, 19, 28, 11, 13, 15, 17, 19, 21, 17, 20, 22, 22, 23, 29, 16, 19, 21, 23, 30, 24, 25, 26, 31, 27, 33, 10, 15, 17, 19, 18, 19, 21, 19, 23, 26, 25, 28, 23
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Do 2, 3, 4, 7, 12, 14 appear just once?
Are 1, 5, 9 missing?
The above questions hold true up to n = 10^6. - John Tyler Rascoe, May 21 2024

Examples

			The primes together with their binary expansions and binary indices begin:
   2:      10 ~ {2}
   3:      11 ~ {1,2}
   5:     101 ~ {1,3}
   7:     111 ~ {1,2,3}
  11:    1011 ~ {1,2,4}
  13:    1101 ~ {1,3,4}
  17:   10001 ~ {1,5}
  19:   10011 ~ {1,2,5}
  23:   10111 ~ {1,2,3,5}
  29:   11101 ~ {1,3,4,5}
  31:   11111 ~ {1,2,3,4,5}
  37:  100101 ~ {1,3,6}
  41:  101001 ~ {1,4,6}
  43:  101011 ~ {1,2,4,6}
  47:  101111 ~ {1,2,3,4,6}
  53:  110101 ~ {1,3,5,6}
  59:  111011 ~ {1,2,4,5,6}
  61:  111101 ~ {1,3,4,5,6}
  67: 1000011 ~ {1,2,7}
  71: 1000111 ~ {1,2,3,7}
  73: 1001001 ~ {1,4,7}
  79: 1001111 ~ {1,2,3,4,7}
		

Crossrefs

The number instead of sum of binary indices is A014499.
Restriction of A029931 (sum of binary indices) to the primes A000040.
The maximum instead of sum of binary indices is A035100, see also A023506.
Row-sums of A372471.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020.
A056239 adds up prime indices.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A372427 lists numbers whose binary and prime indices have the same sum.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Total[bix[Prime[n]]],{n,100}]

Formula

a(n) = A029931(prime(n)).

A035103 Number of 0's in binary representation of n-th prime.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 3, 2, 1, 1, 0, 3, 3, 2, 1, 2, 1, 1, 4, 3, 4, 2, 3, 3, 4, 3, 2, 2, 2, 3, 0, 5, 5, 4, 4, 3, 3, 4, 3, 3, 3, 3, 1, 5, 4, 3, 3, 1, 3, 3, 3, 1, 3, 1, 7, 5, 5, 4, 5, 5, 4, 5, 4, 3, 4, 3, 4, 5, 3, 3, 5, 3, 2, 3, 2, 1, 5, 4, 5, 4, 4, 4, 2, 4, 2, 2, 5, 4, 3, 2, 3, 1, 2, 2, 2, 1, 1, 7, 6, 5, 6, 5, 5, 5, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a035103 = a023416 . a000040  -- Reinhard Zumkeller, Feb 19 2013
  • Mathematica
    Table[ Count[ IntegerDigits[ Prime[ n ], 2 ], 0 ], {n, 120} ]
    Table[DigitCount[p,2,0],{p,Prime[Range[120]]}] (* Harvey P. Dale, Mar 03 2023 *)
  • PARI
    A035103(n) = #(n=binary(prime(n)))-norml2(n) \\ M. F. Hasler, Nov 21 2009
    

Formula

a(n) = A035100(n) - A014499(n). - M. F. Hasler, Nov 21 2009
a(n) = 0 for n in { A059305 }. - Alois P. Heinz, Jun 26 2021

Extensions

More terms from Erich Friedman
Showing 1-10 of 79 results. Next