A095375 Total number of 1's in the binary expansions of the first n primes: summatory A014499.
1, 3, 5, 8, 11, 14, 16, 19, 23, 27, 32, 35, 38, 42, 47, 51, 56, 61, 64, 68, 71, 76, 80, 84, 87, 91, 96, 101, 106, 110, 117, 120, 123, 127, 131, 136, 141, 145, 150, 155, 160, 165, 172, 175, 179, 184, 189, 196, 201, 206, 211, 218, 223, 230, 232, 236, 240, 245, 249, 253
Offset: 1
Examples
n=4: first 4 primes={10,11,101,111}, with a(4)=8 digits 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
read("transforms") : A095375 := proc(n) local a; a := 0 ; for i from 1 to n do a := a+wt(ithprime(i)) ; end do: end proc: # R. J. Mathar, Jul 13 2012 # second Maple program: a:= proc(n) option remember; `if`(n=0, 0, a(n-1) +add(i, i=Bits[Split](ithprime(n)))) end: seq(a(n), n=1..100); # Alois P. Heinz, Jun 26 2021
-
Mathematica
lib[x_] :=Count[IntegerDigits[x, 2], 1] {s=0, ta=Table[0, {256}]}; Do[s=s+lib[Prime[n]]; ta[[n]]=s, {n, 1, 256}] ta
-
PARI
a(n)=my(s);forprime(p=2,prime(n),s+=hammingweight(p));s \\ Charles R Greathouse IV, Mar 29 2013
-
Python
from sympy import primerange, prime def A095375(n): return sum(p.bit_count() for p in primerange(prime(n)+1)) # Chai Wah Wu, Nov 12 2024
Comments