cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027717 Palindromes of form k^2 + k + 4.

Original entry on oeis.org

4, 6, 424, 40204, 48184, 68386, 4002004, 4992994, 6510156, 6830386, 400020004, 424545424, 40000200004, 41162526114, 42314341324, 47678687674, 4000002000004, 4644626264464, 6201427241026, 6866949496686, 400000020000004, 669896222698966, 40000000200000004
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[n^2+n+4,{n,0,25*10^5}],IntegerDigits[#] == Reverse[ IntegerDigits[ #]]&] (* Harvey P. Dale, Mar 05 2015 *)
    Select[Table[n^2+n+4,{n,0,25*10^5}],PalindromeQ] (* Harvey P. Dale, Dec 23 2023 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A027718 Numbers k such that k^2+k+5 is a palindrome.

Original entry on oeis.org

0, 1, 2, 8, 12, 26, 74, 127, 224, 230, 2751, 3462, 4012, 4067, 12752, 22424, 27548, 28168, 105322, 107422, 2358150, 2724718, 2775383, 4063892, 7569245, 85125933, 87579753, 106617617, 2237334999, 2426472519, 2765569146, 2781875716, 2815069131, 4029203527
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 5; Select[Range[0, 10^5], palQ@ f@ # &] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018

A027721 Palindromes of form k^2 + k + 6.

Original entry on oeis.org

6, 8, 606, 656, 818, 83238, 6177716, 6505056, 8343438, 8681868, 834545438, 21543634512, 69872727896, 83456565438, 85425552458, 8032131312308, 8255470745528, 8345676765438, 8716172716178, 8766434346678, 8915858585198, 8973808083798, 213296020692312
Offset: 1

Views

Author

Keywords

Comments

Palindromes h such that 4*h - 23 is a square. - Bruno Berselli, Aug 29 2018

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 6; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)

Formula

a(n) = A027729(n)^2 + A027729(n) + 6. - Giovanni Resta, Aug 27 2018

Extensions

More terms from Giovanni Resta, Aug 27 2018
Showing 1-3 of 3 results.