cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027770 a(n) = (n + 1)*binomial(n + 1, 10).

Original entry on oeis.org

10, 121, 792, 3718, 14014, 45045, 128128, 330616, 787644, 1755182, 3695120, 7407036, 14226212, 26313518, 47070144, 81719000, 138105110, 227779695, 367447080, 580870290, 901350450, 1374917115, 2064391680, 3054514320, 4458356760, 6425278860, 9150726816
Offset: 9

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 12-subsequences of [ 1, n ] with just one contiguous pair.
120288*a(n) is the number of permutations of (n+1) symbols that 10-commute with an (n+1)-cycle (see A233440 for definition), where 120288 = A000757(10). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Programs

  • Maple
    a:= n-> (n+1)*binomial(n+1, 10):
    seq(a(n), n=9..36);  # Alois P. Heinz, Oct 04 2019
  • Mathematica
    ((# + 1) Binomial[# + 1, 10] &) /@ Range[9, 48] (* Alonso del Arte, Oct 04 2019 *)

Formula

G.f.: (10 + x)*x^9/(1 - x)^12.
a(n) = C(n + 1, 10)*C(n + 1, 1). - Zerinvary Lajos, Jun 08 2005, corrected by R. J. Mathar, Feb 13 2016
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=9} 1/a(n) = 5257891/317520 - 5*Pi^2/3.
Sum_{n>=9} (-1)^(n+1)/a(n) = 5*Pi^2/6 + 84992*log(2)/63 - 299498341/317520. (End)