cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027790 a(n) = 10*(n+1)*binomial(n+3,5)/3.

Original entry on oeis.org

10, 80, 350, 1120, 2940, 6720, 13860, 26400, 47190, 80080, 130130, 203840, 309400, 456960, 658920, 930240, 1288770, 1755600, 2355430, 3116960, 4073300, 5262400, 6727500, 8517600, 10687950, 13300560, 16424730, 20137600
Offset: 2

Views

Author

thi ngoc dinh (via R. K. Guy)

Keywords

Comments

Number of 9-subsequences of [ 1, n ] with just 3 contiguous pairs.

Crossrefs

Programs

  • Magma
    A027790:= func< n | 10*(n+1)*Binomial(n+3,5)/3 >;
    [A027790(n): n in [2..40]]; // G. C. Greubel, Feb 21 2025
    
  • Mathematica
    Table[10(n+1) Binomial[n+3,5]/3,{n,2,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{10,80,350,1120,2940,6720,13860},30] (* Harvey P. Dale, Jan 15 2015 *)
  • SageMath
    def A027790(n): return 10*(n+1)*binomial(n+3,5)//3
    print([A027790(n) for n in range(2,41)]) # G. C. Greubel, Feb 21 2025

Formula

G.f.: 10*(1+x)*x^2/(1-x)^7.
a(n) = binomial(n+1, 3)*binomial(n+3, 3) = A000292(n-1)*A000292(n+1). - Zerinvary Lajos, May 13 2005
a(n) = 10*A040977(n). - R. J. Mathar, May 22 2013
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=2} 1/a(n) = 3*Pi^2/2 - 235/16.
Sum_{n>=2} (-1)^n/a(n) = 3*Pi^2/4 - 117/16. (End)
E.g.f.: (1/36)*x^2*(180 + 300*x + 135*x^2 + 21*x^3 + x^4)*exp(x). - G. C. Greubel, Feb 21 2025