A225323 Numbers n such that 11n is a partition number.
1, 2, 7, 16, 21, 27, 35, 57, 72, 178, 338, 415, 622, 759, 1353, 1967, 2365, 2835, 4053, 4834, 5751, 15775, 18566, 21813, 25599, 35105, 47893, 65020, 75620, 101955, 118196, 158330, 490253, 644500, 738024, 1102924, 1636757, 1864205, 2121679, 2413060, 2742487, 3535243, 8424520, 10737664, 13654376, 27709215, 31120519
Offset: 1
Keywords
Examples
2 is in the sequence because 11*2 = 22 and 22 is a partition number: p(8) = A000041(8) = 22.
Crossrefs
Programs
-
Mathematica
Select[PartitionsP[Range[100]], Mod[#, 11] == 0 &]/11 (* T. D. Noe, May 05 2013 *)
Formula
a(j) = A225361(j)/11.
Extensions
a(11)-a(47) from R. J. Mathar, May 05 2013