cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027834 Number of labeled strongly connected n-state 2-input automata.

Original entry on oeis.org

1, 9, 296, 20958, 2554344, 474099840, 124074010080, 43429847756400, 19565965561887360, 11018376449767451520, 7579467449864423769600, 6251471405353507523097600, 6087988343847192559805952000, 6910412728595671664966422425600, 9042510998634333921282477985689600
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    v[r_, n_] := If[n == 0, 1, n^(r*n) - Sum[Binomial[n, t] * n^(r*(n - t)) * v[r, t], {t, 1, n - 1}]];
    s[r_, n_] := v[r, n] + Sum[Binomial[n - 1, t - 1] * v[r, n - t] * s[r, t], {t, 1, n - 1}];
    a[n_] := s[2, n];
    Array[a, 15] (* Jean-François Alcover, Aug 27 2019, from PARI *)
  • PARI
    /* a(n) = s_2(n) using a formula (Th.2) of Valery Liskovets: */
    {v(r,n) = if(n==0,1, n^(r*n) - sum(t=1,n-1, binomial(n,t) * n^(r*(n-t)) * v(r,t) ))}
    {s(r,n) = v(r,n) + sum(t=1,n-1, binomial(n-1,t-1) * v(r,n-t) * s(r,t) )}
    for(n=1,20,print1( s(r=2, n),", ")) \\ Paul D. Hanna, May 16 2018

Formula

a(n) = A006691(n-1)*(n-1)! for n >= 1 (with A006691(0) := 1). [This is a restatement of Valery A. Liskovets' formula in A006691. The original name of A006691 was edited accordingly. - Petros Hadjicostas, Feb 26 2021]

Extensions

Sequence extended (a(7)-a(15)) by Paul D. Hanna using a formula by Valery A. Liskovets.