cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027837 Number of subgroups of index n in free group of rank 3.

Original entry on oeis.org

1, 7, 97, 2143, 68641, 3011263, 173773153, 12785668351, 1169623688353, 130305512589247, 17376934722756577, 2733655173624167551, 501034099176714373921, 105847486567006696384831
Offset: 1

Views

Author

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Programs

  • Haskell
    a027837 n = a027837_list !! (n-1)
    a027837_list = f 1 [] where
       f x ys = y : f (x + 1) (y : ys) where
                y = a001044 x * x - sum (zipWith (*) ys $ tail a001044_list)
    -- Reinhard Zumkeller, Sep 05 2015
  • Mathematica
    a[n_] := a[n] = n*n!^2 - Sum [k!^2*a[n-k], {k, 1, n-1}]; Table[ a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 13 2011, after formula *)
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n,k!^2*x^k)+x*O(x^n)),n)} \\ Paul D. Hanna, Apr 13 2009
    

Formula

a(n) = n*n!^2 - Sum_{k=1..n-1} k!^2*a(n-k).
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=1} (n-1)!^2*x^n ). - Paul D. Hanna, Apr 13 2009

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 05 2000
Further terms from Naohiro Nomoto, Jun 18 2001