cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027844 Number of subgroups of index n of fundamental group of the non-orientable cycle bundle over the Klein bottle.

Original entry on oeis.org

1, 7, 7, 27, 11, 55, 15, 91, 34, 97, 23, 231, 27, 147, 77, 299, 35, 334, 39, 437, 105, 271, 47, 847, 86, 345, 142, 699, 59, 865, 63, 1003, 161, 517, 165, 1590, 75, 615, 189, 1701, 83, 1371, 87, 1391, 374, 835, 95, 3023, 162, 1322, 245, 1821, 107, 2062, 253, 2835
Offset: 1

Views

Author

Keywords

Comments

From a recent general formula of Stanley's for the number of subgroups in G\times Z.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64.

Crossrefs

Programs

  • Mathematica
    b[k_] := If[OddQ[k], DivisorSigma[0, k], (3 DivisorSigma[0, k] + DivisorSigma[1, k/2] - DivisorSigma[0, k/2])/2]; a[n_] := Sum[k*b[k], {k, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 19 2012 *)
  • PARI
    A001001(n) = sumdiv(n, d, sigma(d) * d);
    A060640(n) = sumdiv(n, d, sigma(n\d) * d);
    S1(n)      = if (n%2, 0, A001001(n\2));
    S11(n)     = A060640(n) - if(n%2, 0, A060640(n\2));
    S21(n)     = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4));
    a(n) = S1(n) + S11(n) + S21(n);
    vector(56, n, a(n))  \\ Gheorghe Coserea, May 05 2016

Formula

Sum k*b(k), k|n, where b(k) is the number of n-list coverings of the Klein bottle (A046524).

Extensions

More terms from Valery A. Liskovets
Corrected and extended by Vladeta Jovovic, Feb 03 2003