A027844 Number of subgroups of index n of fundamental group of the non-orientable cycle bundle over the Klein bottle.
1, 7, 7, 27, 11, 55, 15, 91, 34, 97, 23, 231, 27, 147, 77, 299, 35, 334, 39, 437, 105, 271, 47, 847, 86, 345, 142, 699, 59, 865, 63, 1003, 161, 517, 165, 1590, 75, 615, 189, 1701, 83, 1371, 87, 1391, 374, 835, 95, 3023, 162, 1322, 245, 1821, 107, 2062, 253, 2835
Offset: 1
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64.
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..20000
- G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
- V. A. Liskovets and A. Mednykh, Enumeration of subgroups in the fundamental groups of orientable circle bundles over surfaces, Commun. in Algebra, 28, No. 4 (2000), 1717-1738.
Programs
-
Mathematica
b[k_] := If[OddQ[k], DivisorSigma[0, k], (3 DivisorSigma[0, k] + DivisorSigma[1, k/2] - DivisorSigma[0, k/2])/2]; a[n_] := Sum[k*b[k], {k, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 19 2012 *)
-
PARI
A001001(n) = sumdiv(n, d, sigma(d) * d); A060640(n) = sumdiv(n, d, sigma(n\d) * d); S1(n) = if (n%2, 0, A001001(n\2)); S11(n) = A060640(n) - if(n%2, 0, A060640(n\2)); S21(n) = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4)); a(n) = S1(n) + S11(n) + S21(n); vector(56, n, a(n)) \\ Gheorghe Coserea, May 05 2016
Formula
Sum k*b(k), k|n, where b(k) is the number of n-list coverings of the Klein bottle (A046524).
Extensions
More terms from Valery A. Liskovets
Corrected and extended by Vladeta Jovovic, Feb 03 2003
Comments