cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027847 a(n) = Sum_{d|n} sigma(n/d)*d^3.

Original entry on oeis.org

1, 11, 31, 95, 131, 341, 351, 775, 850, 1441, 1343, 2945, 2211, 3861, 4061, 6231, 4931, 9350, 6879, 12445, 10881, 14773, 12191, 24025, 16406, 24321, 22990, 33345, 24419, 44671, 29823, 49911, 41633, 54241, 45981, 80750, 50691, 75669, 68541, 101525, 68963, 119691, 79551, 127585, 111350
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001001 (Dirichlet convolution of sigma and n^2), A275585.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1, n/#]*#^3&]; Array[a, 45] (* Jean-François Alcover, Dec 07 2015 *)
    f[p_, e_] := (p^(3 e + 5) - (p^2 + p + 1)*p^(e + 1) + p + 1)/((p^3 - 1)*(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    N=66; x='x+O('x^N);
    c=sum(j=1,N,j*x^j);
    t=log(1/prod(j=1,N, eta(x^(j))^(j^2)));
    Vec(serconvol(t,c)) \\ Joerg Arndt, May 03 2008
    
  • PARI
    a(n) = sumdiv(n, d, sigma(n/d)*d^3); \\ Michel Marcus, Feb 24 2015

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-3). - Corrected by Álvar Ibeas, Jan 31 2015
Multiplicative with a(p^e) = (p^(3e+5) - (p^2+p+1)*p^(e+1) + p + 1) / ((p^3-1)*(p^2-1)). - Mitch Harris, Jun 27 2005
L.g.f.: -log(Product_{k>=1} (1 - x^k)^sigma_2(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
Sum_{k=1..n} a(k) ~ Pi^4 * zeta(3) * n^4 / 360. - Vaclav Kotesovec, Jan 31 2019