cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027848 a(n) = Sum_{ d|n } sigma(n/d)*d^4.

Original entry on oeis.org

1, 19, 85, 311, 631, 1615, 2409, 4991, 6898, 11989, 14653, 26435, 28575, 45771, 53635, 79887, 83539, 131062, 130341, 196241, 204765, 278407, 279865, 424235, 394406, 542925, 558778, 749199, 707311, 1019065, 923553, 1278255, 1245505, 1587241, 1520079, 2145278, 1874199, 2476479, 2428875, 3149321, 2825803, 3890535, 3418845, 4557083, 4352638, 5317435
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (1 + p + p^2 - p^(e+1) - p^(e+2) - p^(e+3) - p^(e+4) + p^(4*e+7))/(1 - p^3 - p^4 + p^7); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 03 2023 *)
  • PARI
    N=66; x='x+O('x^N); /* that many terms */
    c=sum(j=1,N,j*x^j);
    t=log(1/prod(j=1,N, eta(x^(j))^(j^3)));
    Vec(serconvol(t,c)) /* show terms */
    /* Joerg Arndt, May 03 2008 */

Formula

Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-4). [corrected by Michael Shamos, May 03 2025]
Multiplicative with a(p^e) = (p^(4e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2+p+1)/(p^7 - (p^3+p^2+p+1)*p + p^2+p+1). - Mitch Harris, Jun 27 2005
L.g.f.: -log(Product_{k>=1} (1 - x^k)^sigma_3(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
Sum_{k=1..n} a(k) ~ zeta(5) * Pi^4 * n^5 / 450. - Vaclav Kotesovec, Feb 16 2020, [corrected May 04 2025, according to the corrected DGF]