A288391
Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_3(k)).
Original entry on oeis.org
1, 1, 10, 38, 156, 534, 2014, 6796, 23312, 76165, 247234, 780343, 2435903, 7453859, 22538336, 67130594, 197666509, 574876417, 1654464954, 4711217687, 13288453688, 37133349758, 102873771662, 282630567325, 770410193747, 2084205092693, 5598070811010
Offset: 0
-
m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-q^k)^DivisorSigma(3,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*sigma[3](d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 08 2017
-
nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *)
-
m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^sigma(k,3))) \\ G. C. Greubel, Oct 30 2018
Original entry on oeis.org
1, 17, 85, 273, 631, 1445, 2409, 4369, 6898, 10727, 14653, 23205, 28575, 40953, 53635, 69905, 83539, 117266, 130341, 172263, 204765, 249101, 279865, 371365, 394406, 485775, 558778, 657657, 707311, 911795, 923553, 1118481, 1245505, 1420163, 1520079, 1883154
Offset: 1
-
f[p_, e_] := (p^(4*e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2 + p + 1)/(p^7 - (p^3+p^2+p+1)*p + p^2 + p + 1); f[2, e_] := (16^(e+1)-1)/15; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
A288392
Expansion of Product_{k>=1} (1 - x^k)^(sigma_3(k)).
Original entry on oeis.org
1, -1, -9, -19, -9, 163, 573, 1127, 109, -7198, -27159, -58611, -50378, 157532, 892986, 2431694, 4040909, 1605559, -16109148, -68261139, -167737209, -263590908, -109589779, 934422499, 3976197701, 9922490735, 16765911071, 13022553978, -33008232762
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1-q^k)^DivisorSigma(3,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
-
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
d*sigma[3](d), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1,
-add(b(n-i)*a(i), i=0..n-1))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 08 2017
-
nmax = 30; CoefficientList[Series[Product[(1-x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* G. C. Greubel, Oct 30 2018 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1, m, (1-x^k)^sigma(k,3))) \\ G. C. Greubel, Oct 30 2018
A320940
a(n) = Sum_{d|n} d*sigma_n(d).
Original entry on oeis.org
1, 11, 85, 1127, 15631, 287021, 5764809, 135007759, 3487020610, 100146496681, 3138428376733, 107032667155169, 3937376385699303, 155582338242604221, 6568408966322733475, 295154660699054931999, 14063084452067724991027, 708239400347943609329270
Offset: 1
a(6) = 1*sigma_6(1)+2*sigma_6(2)+3*sigma_6(3)+6*sigma_6(6) = 1+2*65+3*730+6*47450 = 287021.
-
[&+[d*DivisorSigma(n,d):d in Divisors(n)]:n in [1..18]]; // Marius A. Burtea, Feb 15 2020
-
with(numtheory): seq(coeff(series(n*(-log(mul((1-x^k)^sigma[n](k),k=1..n))),x,n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 28 2018
-
Table[Sum[d DivisorSigma[n, d], {d, Divisors[n]}] , {n, 18}]
Table[n SeriesCoefficient[-Log[Product[(1 - x^k)^DivisorSigma[n, k], {k, 1, n}]], {x, 0, n}], {n, 18}]
-
a(n) = sumdiv(n, d, d*sigma(d, n)); \\ Michel Marcus, Oct 28 2018
-
from sympy import divisor_sigma, divisors
def A320940(n):
return sum(divisor_sigma(d)*(n//d)**(n+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
A321140
a(n) = Sum_{d|n} sigma_3(d).
Original entry on oeis.org
1, 10, 29, 83, 127, 290, 345, 668, 786, 1270, 1333, 2407, 2199, 3450, 3683, 5349, 4915, 7860, 6861, 10541, 10005, 13330, 12169, 19372, 15878, 21990, 21226, 28635, 24391, 36830, 29793, 42798, 38657, 49150, 43815, 65238, 50655, 68610, 63771, 84836, 68923, 100050, 79509, 110639, 99822
Offset: 1
-
with(numtheory): seq(coeff(series(add(sigma[3](k)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 28 2018
-
Table[Sum[DivisorSigma[3, d], {d, Divisors[n]}] , {n, 45}]
nmax = 45; Rest[CoefficientList[Series[Sum[DivisorSigma[3, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
f[p_, e_] := (p^3*(p^(3e+3) - e - 2) + e + 1)/(p^3 - 1)^2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
-
a(n) = sumdiv(n, d, sigma(d, 3)); \\ Michel Marcus, Oct 28 2018
A322104
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d*sigma_k(d).
Original entry on oeis.org
1, 1, 5, 1, 7, 7, 1, 11, 13, 17, 1, 19, 31, 35, 11, 1, 35, 85, 95, 31, 35, 1, 67, 247, 311, 131, 91, 15, 1, 131, 733, 1127, 631, 341, 57, 49, 1, 259, 2191, 4295, 3131, 1615, 351, 155, 34, 1, 515, 6565, 16775, 15631, 8645, 2409, 775, 130, 55, 1, 1027, 19687, 66311, 78131, 49111, 16815, 4991, 850, 217, 23
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
5, 7, 11, 19, 35, 67, ...
7, 13, 31, 85, 247, 733, ...
17, 35, 95, 311, 1127, 4295, ...
11, 31, 131, 631, 3131, 15631, ...
35, 91, 341, 1615, 8645, 49111, ...
-
Table[Function[k, Sum[d DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[j DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
-
T(n,k)={sumdiv(n, d, d^(k+1)*sigma(n/d))}
for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018
A344787
a(n) = n * Sum_{d|n} sigma_d(d) / d, where sigma_k(n) is the sum of the k-th powers of the divisors of n.
Original entry on oeis.org
1, 7, 31, 287, 3131, 47527, 823551, 16843583, 387440266, 10009772937, 285311670623, 8918294639219, 302875106592267, 11112685050294387, 437893920912795941, 18447025553014982271, 827240261886336764195, 39346558271492953948522, 1978419655660313589123999
Offset: 1
a(4) = 4 * Sum_{d|4} sigma_d(d) / d = 4 * ((1^1)/1 + (1^2 + 2^2)/2 + (1^4 + 2^4 + 4^4)/4) = 287.
-
Table[n*Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k])/k, {k, n}], {n, 20}]
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Dec 16 2022
Showing 1-7 of 7 results.
Comments