cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A288417 a(n) = Sum_{d|n} A000593(n/d).

Original entry on oeis.org

1, 2, 5, 3, 7, 10, 9, 4, 18, 14, 13, 15, 15, 18, 35, 5, 19, 36, 21, 21, 45, 26, 25, 20, 38, 30, 58, 27, 31, 70, 33, 6, 65, 38, 63, 54, 39, 42, 75, 28, 43, 90, 45, 39, 126, 50, 49, 25, 66, 76, 95, 45, 55, 116, 91, 36, 105, 62, 61, 105, 63, 66, 162, 7, 105, 130, 69
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000012 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Cf. A000012.
Sum_{d|n} d^k*A000593(n/d): this sequence (k=0), A109386 (k=1), A288418 (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    f[p_, e_] := Sum[(i + 1)*p^(e - i), {i, 0, e}]; f[2, e_] := e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2022 *)
  • PARI
    a(n)={sumdiv(n, d, sigma(d>>valuation(d,2)))} \\ Andrew Howroyd, Jul 27 2018

Formula

L.g.f.: log(Product_{k>=1} (1 + x^k)^(sigma(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jun 19 2018
Multiplicative with a(2^e) = e+1 and a(p^e) = Sum_{i=0..e} (i+1)*p^(e-i) for e >= 0 and prime p > 2. - Werner Schulte, Jan 05 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/144 = 0.676452... . - Amiram Eldar, Oct 22 2022

A288415 Expansion of Product_{k>=1} (1 + x^k)^(sigma_3(k)).

Original entry on oeis.org

1, 1, 9, 37, 137, 487, 1749, 5901, 19695, 63832, 202905, 632689, 1941394, 5860868, 17448558, 51255292, 148726841, 426605755, 1210569740, 3400427281, 9460683203, 26083933370, 71300381025, 193313191005, 520057831035, 1388722752205, 3682100198763
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Crossrefs

Product_{k>=1} (1 + x^k)^sigma_m(k): A107742 (m=0), A192065 (m=1), A288414 (m=2), this sequence (m=3).

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+q^k)^DivisorSigma(3,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory): seq(coeff(series(mul((1+x^k)^(sigma[3](k)),k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^sigma(k,3))) \\ G. C. Greubel, Oct 30 2018
    

Formula

a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A288420(k)*a(n-k) for n > 0.
a(n) ~ exp(5*Pi^(4/5) * Zeta(5)^(1/5) * n^(4/5) / 2^(12/5)) * Zeta(5)^(1/10) / (2^(169/240) * sqrt(5) * Pi^(1/10) * n^(3/5)). - Vaclav Kotesovec, Mar 23 2018
G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(j^3). - Ilya Gutkovskiy, Aug 26 2018

A109386 G.f. is the logarithm of the g.f. of A107742: Sum_{n>=1} (a(n)/n)*x^n = log( Sum_{n>=0} A107742(n)*x^n ).

Original entry on oeis.org

1, 3, 7, 7, 11, 21, 15, 15, 34, 33, 23, 49, 27, 45, 77, 31, 35, 102, 39, 77, 105, 69, 47, 105, 86, 81, 142, 105, 59, 231, 63, 63, 161, 105, 165, 238, 75, 117, 189, 165, 83, 315, 87, 161, 374, 141, 95, 217, 162, 258, 245, 189, 107, 426, 253, 225, 273, 177, 119, 539, 123, 189, 510, 127, 297
Offset: 1

Views

Author

Paul D. Hanna, Jun 26 2005

Keywords

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), this sequence (k=1), A288418 (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*DivisorSum[#, Mod[#, 2]&]&]; Array[a, 65] (* Jean-François Alcover, Dec 23 2015 *)
    f[p_, e_] := ((p + e*(p-1) - 2)*p^(e+1) + 1)/(p-1)^2; f[2, e_] := 2^(e+1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    a(n)=sumdiv(n,d,d*sumdiv(d,m,m%2))
    
  • PARI
    N=66; x='x+O('x^N); /* that many terms */
    c=sum(j=1, N, j*x^j);
    t=log( 1/prod(j=0, N, eta(x^(2*j+1))) );
    gf=serconvol(t, c);
    Vec(gf) /* show terms */
    /* Joerg Arndt, May 03 2008 */

Formula

a(n) = Sum_{d|n} d * Sum_{m|d} (m mod 2).
G.f.: Sum_{n>=1} a(n)/n*x^n = Sum_{j>=1} Sum_{i>=1} log(1+x^(i*j)).
From Vladeta Jovovic, Jul 05 2005:(Start)
Multiplicative with a(2^e) = 2^(e+1)-1 and a(p^e) = (p^(e+2)*(e+1)-p^(e+1)*(e+2)+1)/(p-1)^2 for p>2.
G.f.: Sum_{n>0} n*A000005(n)*x^n/(1+x^n).
G.f.: Sum_{n>0} n*A001227(n)*x^n/(1-x^n).
a(n) = A060640(n) if n is odd, else a(n) = A060640(n) - 2*A060640(n/2).
a(n) = Sum_{d|n} d*A001227(d).
a(n) = Sum_{d|n} d*A000593(n/d).
A107742(n) = (1/n)*Sum_{k=1..n} a(k)*A107742(n-k). (End)

A288418 a(n) = Sum_{d|n} d^2*A000593(n/d).

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 130, 155, 133, 273, 183, 285, 403, 341, 307, 650, 381, 651, 741, 665, 553, 1105, 806, 915, 1210, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2730, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 4030, 2765, 2257, 4433, 2850, 4030
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000290 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), this sequence (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Function[d, d^2*DivisorSum[n/d, If[OddQ[#], #, 0]&]] ];
    Array[a, 50] (* Jean-François Alcover, Jul 03 2017 *)
    f[p_, e_] := (p^(e + 1) - 1)*(p^(e + 2) - 1)/((p - 1)*(p^2 - 1)); f[2, e_] := (4^(e + 1) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*sigma((n/d)>>valuation(n/d, 2))); \\ Michel Marcus, Jul 03 2017; corrected Jun 12 2022

Formula

L.g.f.: log(Product_{k>=1} (1 + x^k)^sigma(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jun 19 2018
From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A001001(n) for odd n.
Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(e+1)-1)*(p^(e+2)-1)/((p-1)*(p^2-1)) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)*zeta(3)/4 = A183699 / 4 = 0.494326... . (End)

A288419 a(n) = Sum_{d|n} d^3*A000593(n/d).

Original entry on oeis.org

1, 9, 31, 73, 131, 279, 351, 585, 850, 1179, 1343, 2263, 2211, 3159, 4061, 4681, 4931, 7650, 6879, 9563, 10881, 12087, 12191, 18135, 16406, 19899, 22990, 25623, 24419, 36549, 29823, 37449, 41633, 44379, 45981, 62050, 50691, 61911, 68541, 76635, 68963, 97929
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000578 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), A288418 (k=2), this sequence (k=3), A288420 (k=4).

Programs

  • Mathematica
    f[p_, e_] := (p^(3*e+5) - (p^2+p+1)*p^(e+1) + p + 1)/((p^3-1)*(p^2-1)); f[2, e_] := (8^(e+1)-1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n)={sumdiv(n, d, (n/d)^3*sigma(d>>valuation(d,2)))} \\ Andrew Howroyd, Jul 27 2018

Formula

From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A027847(n) for odd n.
Multiplicative with a(2^e) = (8^(e+1)-1)/7 and a(p^e) = (p^(3*e+5) - (p^2+p+1)*p^(e+1) + p + 1)/((p^3-1)*(p^2-1)) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^4, where c = 7*Pi^4*zeta(3)/2880 = (7/32)*zeta(3)*zeta(4) = (7/32) * A183700 = 0.284596... . (End)

A288423 Expansion of Product_{k>=1} 1/(1 + x^k)^(sigma_3(k)).

Original entry on oeis.org

1, -1, -8, -20, -8, 134, 512, 1062, 406, -5319, -22532, -51843, -58869, 83035, 648412, 1947384, 3665081, 3040131, -8272126, -46481039, -128400098, -234847560, -215189896, 378947363, 2437661943, 7036096665, 13868464378, 16886982518, -4042283985, -93095770772
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Crossrefs

Product_{k>=1} 1/(1 + x^k)^sigma_m(k): A288007 (m=0), A288421 (m=1), A288422 (m=2), this sequence (m=3).

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1+q^k)^DivisorSigma(3,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory): seq(coeff(series(mul(1/(1+x^k)^(sigma[3](k)),k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1+x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1+x^k)^sigma(k,3))) \\ G. C. Greubel, Oct 30 2018
    

Formula

Convolution inverse of A288415.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A288420(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma_4(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 29 2018
Showing 1-6 of 6 results.