cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A109386 G.f. is the logarithm of the g.f. of A107742: Sum_{n>=1} (a(n)/n)*x^n = log( Sum_{n>=0} A107742(n)*x^n ).

Original entry on oeis.org

1, 3, 7, 7, 11, 21, 15, 15, 34, 33, 23, 49, 27, 45, 77, 31, 35, 102, 39, 77, 105, 69, 47, 105, 86, 81, 142, 105, 59, 231, 63, 63, 161, 105, 165, 238, 75, 117, 189, 165, 83, 315, 87, 161, 374, 141, 95, 217, 162, 258, 245, 189, 107, 426, 253, 225, 273, 177, 119, 539, 123, 189, 510, 127, 297
Offset: 1

Views

Author

Paul D. Hanna, Jun 26 2005

Keywords

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), this sequence (k=1), A288418 (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*DivisorSum[#, Mod[#, 2]&]&]; Array[a, 65] (* Jean-François Alcover, Dec 23 2015 *)
    f[p_, e_] := ((p + e*(p-1) - 2)*p^(e+1) + 1)/(p-1)^2; f[2, e_] := 2^(e+1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    a(n)=sumdiv(n,d,d*sumdiv(d,m,m%2))
    
  • PARI
    N=66; x='x+O('x^N); /* that many terms */
    c=sum(j=1, N, j*x^j);
    t=log( 1/prod(j=0, N, eta(x^(2*j+1))) );
    gf=serconvol(t, c);
    Vec(gf) /* show terms */
    /* Joerg Arndt, May 03 2008 */

Formula

a(n) = Sum_{d|n} d * Sum_{m|d} (m mod 2).
G.f.: Sum_{n>=1} a(n)/n*x^n = Sum_{j>=1} Sum_{i>=1} log(1+x^(i*j)).
From Vladeta Jovovic, Jul 05 2005:(Start)
Multiplicative with a(2^e) = 2^(e+1)-1 and a(p^e) = (p^(e+2)*(e+1)-p^(e+1)*(e+2)+1)/(p-1)^2 for p>2.
G.f.: Sum_{n>0} n*A000005(n)*x^n/(1+x^n).
G.f.: Sum_{n>0} n*A001227(n)*x^n/(1-x^n).
a(n) = A060640(n) if n is odd, else a(n) = A060640(n) - 2*A060640(n/2).
a(n) = Sum_{d|n} d*A001227(d).
a(n) = Sum_{d|n} d*A000593(n/d).
A107742(n) = (1/n)*Sum_{k=1..n} a(k)*A107742(n-k). (End)

A288418 a(n) = Sum_{d|n} d^2*A000593(n/d).

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 130, 155, 133, 273, 183, 285, 403, 341, 307, 650, 381, 651, 741, 665, 553, 1105, 806, 915, 1210, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2730, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 4030, 2765, 2257, 4433, 2850, 4030
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000290 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), this sequence (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Function[d, d^2*DivisorSum[n/d, If[OddQ[#], #, 0]&]] ];
    Array[a, 50] (* Jean-François Alcover, Jul 03 2017 *)
    f[p_, e_] := (p^(e + 1) - 1)*(p^(e + 2) - 1)/((p - 1)*(p^2 - 1)); f[2, e_] := (4^(e + 1) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*sigma((n/d)>>valuation(n/d, 2))); \\ Michel Marcus, Jul 03 2017; corrected Jun 12 2022

Formula

L.g.f.: log(Product_{k>=1} (1 + x^k)^sigma(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jun 19 2018
From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A001001(n) for odd n.
Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(e+1)-1)*(p^(e+2)-1)/((p-1)*(p^2-1)) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)*zeta(3)/4 = A183699 / 4 = 0.494326... . (End)

A288419 a(n) = Sum_{d|n} d^3*A000593(n/d).

Original entry on oeis.org

1, 9, 31, 73, 131, 279, 351, 585, 850, 1179, 1343, 2263, 2211, 3159, 4061, 4681, 4931, 7650, 6879, 9563, 10881, 12087, 12191, 18135, 16406, 19899, 22990, 25623, 24419, 36549, 29823, 37449, 41633, 44379, 45981, 62050, 50691, 61911, 68541, 76635, 68963, 97929
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000578 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), A288418 (k=2), this sequence (k=3), A288420 (k=4).

Programs

  • Mathematica
    f[p_, e_] := (p^(3*e+5) - (p^2+p+1)*p^(e+1) + p + 1)/((p^3-1)*(p^2-1)); f[2, e_] := (8^(e+1)-1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n)={sumdiv(n, d, (n/d)^3*sigma(d>>valuation(d,2)))} \\ Andrew Howroyd, Jul 27 2018

Formula

From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A027847(n) for odd n.
Multiplicative with a(2^e) = (8^(e+1)-1)/7 and a(p^e) = (p^(3*e+5) - (p^2+p+1)*p^(e+1) + p + 1)/((p^3-1)*(p^2-1)) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^4, where c = 7*Pi^4*zeta(3)/2880 = (7/32)*zeta(3)*zeta(4) = (7/32) * A183700 = 0.284596... . (End)

A288420 a(n) = Sum_{d|n} d^4*A000593(n/d).

Original entry on oeis.org

1, 17, 85, 273, 631, 1445, 2409, 4369, 6898, 10727, 14653, 23205, 28575, 40953, 53635, 69905, 83539, 117266, 130341, 172263, 204765, 249101, 279865, 371365, 394406, 485775, 558778, 657657, 707311, 911795, 923553, 1118481, 1245505, 1420163, 1520079, 1883154
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000583 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), A288418 (k=2), A288419 (k=3), this sequence (k=4).

Programs

  • Mathematica
    f[p_, e_] :=  (p^(4*e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2 + p + 1)/(p^7 - (p^3+p^2+p+1)*p + p^2 + p + 1); f[2, e_] := (16^(e+1)-1)/15; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)

Formula

From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A027848(n) for odd n.
Multiplicative with a(2^e) = (16^(e+1)-1)/15 and a(p^e) = (p^(4*e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2 + p + 1)/(p^7 - (p^3+p^2+p+1)*p + p^2 + p + 1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^4*zeta(5)/480 = (3/16)*zeta(4)*zeta(5) = 0.210429... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A288571 a(n) = Sum_{d|n} (-1)^(n/d+1)*tau(d), where tau = number of divisors (A000005).

Original entry on oeis.org

1, 1, 3, 0, 3, 3, 3, -2, 6, 3, 3, 0, 3, 3, 9, -5, 3, 6, 3, 0, 9, 3, 3, -6, 6, 3, 10, 0, 3, 9, 3, -9, 9, 3, 9, 0, 3, 3, 9, -6, 3, 9, 3, 0, 18, 3, 3, -15, 6, 6, 9, 0, 3, 10, 9, -6, 9, 3, 3, 0, 3, 3, 18, -14, 9, 9, 3, 0, 9, 9, 3, -12, 3, 3, 18, 0, 9, 9, 3, -15, 15, 3, 3, 0, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 23 2018

Keywords

Comments

Dirichlet convolution of A048272 and A000012. - Vaclav Kotesovec, Jan 13 2024

Crossrefs

Cf. A000005, A001620, A007425, A017113 (positions of 0's), A048272, A288417, A317531.

Programs

  • Maple
    with(numtheory): seq(add((-1)^(n/a+1)*tau(a),a=divisors(n)),n=1..85); # Paolo P. Lava, Aug 24 2018
  • Mathematica
    Table[Sum[(-1)^(n/d + 1) DivisorSigma[0, d], {d, Divisors[n]}], {n, 85}]
    nmax = 85; Rest[CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 85; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := If[p == 2, (e + 1)*(2 - e)/2, (e + 1)*(e + 2)/2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*numdiv(d)); \\ Michel Marcus, Aug 24 2018

Formula

G.f.: Sum_{k>=1} tau(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(tau(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
Multiplicative with a(2^e) = (e+1)*(2-e)/2, and a(p^e) = (e+1)*(e+2)/2 for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Sep 14 2023: (Start)
Dirichlet g.f.: (1- 1/2^(s-1)) * zeta(s)^3.
Sum_{k=1..n} a(k) ~ log(2) * n * (log(n) + 3*gamma - 1 - log(2)/2), where gamma is Euler's constant (A001620). (End)

A318769 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 1, 3, 17, 83, 639, 5749, 53227, 561273, 7216577, 94292531, 1352253561, 21657812923, 359338829407, 6460367397093, 126124578755939, 2527688612931569, 54137820027005697, 1236730462664172643, 29137619131277727457, 725282418459957414051, 18981526480933601454911
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Comments

a(n)/n! is the weigh transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(-(-1)^(j/d)*sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
    nmax = 21; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(A017665(k)/A017666(k)).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n/2) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018
a(n)/n! ~ c * exp(sqrt(n/2)*Pi^2/3) / n^(3/4 + log(2)/4), where c = 0.15653645678497413538057076667218805302154965061194080137... - Vaclav Kotesovec, Sep 05 2018

A130540 Triangle read by rows T(n,k) in which column k lists the terms of A000203 interspersed with (k-1) zeros, 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 4, 0, 1, 7, 3, 0, 1, 6, 0, 0, 0, 1, 12, 4, 3, 0, 0, 1, 8, 0, 0, 0, 0, 0, 1, 15, 7, 0, 3, 0, 0, 0, 1, 13, 0, 4, 0, 0, 0, 0, 0, 1, 18, 6, 0, 0, 3, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 28, 12, 7, 4, 0, 3, 0, 0, 0, 0, 0, 1, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 24, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 03 2007

Keywords

Comments

The original definition was: A127093 * A125093^(-1).
Left border = A000203, sigma(n): (1, 3, 4, 7, 6, ...). Row sums = A007429: (1, 4, 5, 11, 7, 20, 9, ...); = inverse Moebius transform applied to sigma(n); (i.e., inverse Moebius transform applied twice to natural numbers).
T(n,k) is the total number of parts congruent to 0 mod k in the partitions of n into equal parts. - Omar E. Pol, Nov 19 2019
From Omar E. Pol, Jan 01 2020: (Start)
Conjecture 1: the sum of odd-indexed terms in row n equals A327096(n).
Conjecture 2: the sum of even-indexed terms in row n equals the n-th term of the sequence formed by A000004 and A007429 interleaved.
Conjecture 3: alternating row sums give A288417. (End)

Examples

			First few rows of the triangle are:
   1;
   3,  1;
   4,  0, 1;
   7,  3, 0, 1;
   6,  0, 0, 0, 1;
  12,  4, 3, 0, 0, 1;
   8,  0, 0, 0, 0, 0, 1;
  15,  7, 0, 3, 0, 0, 0, 1;
  13,  0, 4, 0, 0, 0, 0, 0, 1;
  18,  6, 0, 0, 3, 0, 0, 0, 0, 1;
  12,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  28, 12, 7, 4, 0, 3, 0, 0, 0, 0, 0, 1;
  14,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  24,  8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1;
  24,  0, 6, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  31, 15, 0, 7, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1;
...
Extended by _Omar E. Pol_, Nov 19 2019
		

Crossrefs

Formula

A127093 * A125093^(-1), as infinite lower triangular matrices.

Extensions

New name and more terms from Omar E. Pol, Nov 19 2019

A318845 a(n) = Sum_{d|n} (-1)^(n/d+1) * Sum_{j|d} sigma(j), where sigma(j) = sum of divisors of j (A000203).

Original entry on oeis.org

1, 3, 6, 6, 8, 18, 10, 10, 24, 24, 14, 36, 16, 30, 48, 15, 20, 72, 22, 48, 60, 42, 26, 60, 46, 48, 82, 60, 32, 144, 34, 21, 84, 60, 80, 144, 40, 66, 96, 80, 44, 180, 46, 84, 192, 78, 50, 90, 76, 138, 120, 96, 56, 246, 112, 100, 132, 96, 62, 288, 64, 102, 240, 28, 128, 252, 70, 120, 156, 240
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) Sum[DivisorSigma[1, j], {j, Divisors[d]}], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, DivisorSigma[1, #] &] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(DivisorSum[k, DivisorSigma[1, #] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3); f[2, e_] := (e+1)*(e+2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2025 *)
  • PARI
    a(n) = {my(f = factor(n), p , e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, (e+1)*(e+2)/2, (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3)));} \\ Amiram Eldar, May 26 2025

Formula

G.f.: Sum_{k>=1} A007429(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(A007429(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
From Amiram Eldar, May 26 2025: (Start)
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3) for an odd prime p.
Dirichlet g.f: zeta(s-1) * zeta(s)^2 * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^6/864 = 1.112718... . (End)

A327096 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 - x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 5, 7, 7, 15, 9, 15, 18, 21, 13, 35, 15, 27, 35, 31, 19, 54, 21, 49, 45, 39, 25, 75, 38, 45, 58, 63, 31, 105, 33, 63, 65, 57, 63, 126, 39, 63, 75, 105, 43, 135, 45, 91, 126, 75, 49, 155, 66, 114, 95, 105, 55, 174, 91, 135, 105, 93, 61, 245, 63, 99
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 13 2019

Keywords

Comments

Inverse Moebius transform of A002131.
Dirichlet convolution of A000027 with A001227.

Crossrefs

Programs

  • Mathematica
    nmax = 62; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 - x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Sum[Total[Select[Divisors[d], OddQ[d/#] &]], {d, Divisors[n]}]; Table[a[n], {n, 1, 62}]
  • PARI
    a(n)={sumdiv(n, d, if(n/d%2, sigma(d)))} \\ Andrew Howroyd, Sep 13 2019

Formula

G.f.: Sum_{k>=1} A002131(k) * x^k / (1 - x^k).
G.f.: Sum_{k>=1} A001227(k) * x^k / (1 - x^k)^2.
a(n) = Sum_{d|n} A002131(d).
a(n) = Sum_{d|n} d * A001227(n/d).
a(n) = (A007429(n) + A288417(n)) / 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/96 = 1.01467803... (A300707). - Amiram Eldar, Oct 23 2022

A327122 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 + x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 3, 7, 7, 9, 7, 15, 10, 21, 11, 21, 15, 21, 21, 31, 19, 30, 19, 49, 21, 33, 23, 45, 38, 45, 30, 49, 31, 63, 31, 63, 33, 57, 49, 70, 39, 57, 45, 105, 43, 63, 43, 77, 70, 69, 47, 93, 50, 114, 57, 105, 55, 90, 77, 105, 57, 93, 59, 147, 63, 93, 70, 127, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Inverse Moebius transform of A050469.

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    A050469[n_] := DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 4]] &] - DivisorSum[n, # &, MemberQ[{3}, Mod[n/#, 4]] &]; a[n_] := DivisorSum[n, A050469[#] &]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))]; f[2, e_] := 2^(e+1)-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(e+1)-1, if(p%4 == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))))); } \\ Amiram Eldar, Aug 28 2023

Formula

a(n) = Sum_{d|n} A050469(d).
From Amiram Eldar, Aug 28 2023: (Start)
Multiplicative with a(2^e) = 2^(e+1)-1, and if p is an odd prime a(p^e) = (p^(e+2)-(e+2)*p+e+1)/(p-1)^2 if p == 1 (mod 4) and (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1)) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 * (A175647/A243381) = 0.753351504961... . (End)
Showing 1-10 of 11 results. Next