cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A288007 Expansion of 1/Product_{j>=1} Product_{i>=1} (1 + x^(i*j)).

Original entry on oeis.org

1, -1, -1, -1, 1, 1, 0, 2, 2, -1, -2, 0, -1, -1, -4, -1, 2, 0, -1, 2, 2, 5, -1, 4, 8, -4, -5, 0, -1, -1, -6, -1, 3, -7, -9, -5, 1, 3, -3, 3, 17, 0, -6, 8, 12, 8, 0, 8, 17, -11, -9, -10, 0, -2, -20, 5, 14, -18, -25, -10, 1, -7, -21, 2, 29, -12, -17, 6, 17, 32, -4
Offset: 0

Views

Author

Seiichi Manyama, Jun 04 2017

Keywords

Crossrefs

Product_{k>=1} 1/(1 + x^k)^sigma_m(k): this sequence (m=0), A288421 (m=1), A288422 (m=2), A288423 (m=3).

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[(&*[1 + x^(j*k): j in [1..2*m]]): k in [1..2*m]]))); // G. C. Greubel, Oct 29 2018
  • Maple
    with(numtheory): seq(coeff(series(exp(-add(sigma(k)*x^k/(k*(1-x^(2*k))),k=1..n)),x,n+1), x, n), n = 0 .. 70); # Muniru A Asiru, Jan 30 2019
  • Mathematica
    A109386[n_] := DivisorSum[n, #*DivisorSum[#, Mod[#, 2] &] &]; a[0] = 1; a[n_] := a[n] = -(1/n) Sum[A109386[k] a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 04 2017 *)
    CoefficientList[Series[1/Product[Product[1+x^(j*k), {j,1,100}], {k,1,100}], {x,0,80}], x] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    m=80; x='x+O('x^m); Vec(1/(prod(k=1,2*m, prod(j=1,2*m, 1+x^(j*k) )))) \\ G. C. Greubel, Oct 29 2018
    

Formula

Convolution inverse of A107742.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109386(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 26 2018

A288421 Expansion of Product_{k>=1} 1/(1 + x^k)^sigma(k).

Original entry on oeis.org

1, -1, -2, -2, 1, 5, 4, 10, 6, -5, -20, -27, -37, -32, -18, 23, 82, 128, 190, 185, 143, 43, -160, -424, -662, -968, -1058, -971, -571, 238, 1326, 2748, 4195, 5301, 5930, 5473, 3353, 55, -5346, -12106, -19421, -26603, -31950, -33248, -29344, -17469, 2343, 30966
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Crossrefs

Product_{k>=1} 1/(1 + x^k)^sigma_m(k): A288007 (m=0), this sequence (m=1), A288422 (m=2), A288423 (m=3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1+q^k)^DivisorSigma(1,k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1+x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m+2, 1/(1+x^k)^sigma(k))) \\ G. C. Greubel, Oct 29 2018
    

Formula

Convolution inverse of A192065.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A288418(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 29 2018

A288422 Expansion of Product_{k>=1} 1/(1 + x^k)^(sigma_2(k)).

Original entry on oeis.org

1, -1, -4, -6, 0, 24, 51, 89, 47, -152, -578, -1149, -1482, -738, 2384, 8901, 18476, 26774, 24151, -7143, -86804, -226605, -406442, -539872, -441822, 181268, 1671148, 4240334, 7618777, 10551340, 10218856, 1973258, -20190349, -61492391, -121880826
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Crossrefs

Product_{k>=1} 1/(1 + x^k)^sigma_m(k): A288007 (m=0), A288421 (m=1), this sequence (m=2), A288423 (m=3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1+q^k)^DivisorSigma(2,k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1+x^k)^DivisorSigma[2, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m+2, 1/(1+x^k)^sigma(k,2))) \\ G. C. Greubel, Oct 29 2018
    

Formula

Convolution inverse of A288414.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A288419(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma_3(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 29 2018
Showing 1-3 of 3 results.