A027869 Number of 0's in n!.
0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 2, 2, 4, 4, 2, 4, 4, 4, 5, 6, 7, 7, 8, 5, 6, 9, 8, 9, 10, 7, 9, 7, 10, 8, 11, 9, 10, 12, 16, 12, 9, 15, 13, 13, 12, 13, 16, 11, 14, 14, 19, 18, 18, 17, 18, 18, 17, 20, 17, 19, 19, 26, 20, 21, 20, 20, 23, 22, 25, 21, 20, 25, 23, 35
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- Index entries for sequences related to factorial numbers.
Programs
-
Mathematica
Table[Count[IntegerDigits[n!], 0], {n, 0, 100}] (* T. D. Noe, Apr 10 2012 *) DigitCount[Range[0,80]!,10,0] (* Harvey P. Dale, Jul 08 2020 *)
-
PARI
a(n)=my(d=digits(n!)); sum(i=1,#d,d[i]==0) \\ Charles R Greathouse IV, Jul 06 2017
-
Python
from math import factorial def a(n): return str(factorial(n)).count('0') print([a(n) for n in range(74)]) # Michael S. Branicky, Jan 11 2022
Formula
a(n) = A034886(n) - (A079680(n) + A079714(n) + A079684(n) + A079688(n) + A079690(n) + A079691(n) + A079692(n) + A079693(n) + A079694(n)). - Reinhard Zumkeller, Jan 27 2008
A027868(n) <= a(n). - Reinhard Zumkeller, Jan 27 2008
Conjecture: a(n) ~ (9*A027868(n) + A034886(n))/10. This formula is based on the assumption that the digits other than trailing zeros are uniformly randomly distributed. - Nicolas Bělohoubek, Jan 11 2022