cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027908 a(n) = T(2*n, n), T given by A027907.

Original entry on oeis.org

1, 2, 10, 50, 266, 1452, 8074, 45474, 258570, 1481108, 8533660, 49402850, 287134346, 1674425300, 9792273690, 57407789550, 337281021450, 1985342102964, 11706001102180, 69124774458092, 408737856117916, 2419833655003752, 14341910428953018, 85087759173024870
Offset: 0

Views

Author

Keywords

Comments

Central terms of the triangle in A111808. - Reinhard Zumkeller, Aug 17 2005
Number of paths of semilength n starting at (0,0) and ending on the X-axis using steps (1,1), (1,-1) and (1,3). - David Scambler, Jun 21 2013

Crossrefs

Programs

  • Maple
    ogf := series( RootOf( (144*x^2+140*x-27)*g^4+(18-12*x)*g^2+8*g+1, g), x=0, 20); # Mark van Hoeij, Nov 16 2011
    a := n -> simplify(GegenbauerC(n, -2*n, -1/2)):
    seq(a(n), n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    Table[Binomial[4 n, n] Hypergeometric2F1[-3 n, -n, 1/2 - 2 n, 1/4], {n, 0, 20}] (* or *) Table[GegenbauerC[3 n, -2 n, -1/2] + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
  • Maxima
    makelist(ultraspherical(n,-2*n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */

Formula

G.f.: -(g^2+g+1)/(3*g^2+g-1) where g = x times the g.f. of A143927. - Mark van Hoeij, Nov 16 2011
a(n) = GegenbauerC(n, -2*n, -1/2). - Peter Luschny, May 09 2016
From Peter Bala, Jan 26 2020: (Start)
a(n) = [x^(2*n)](1 + x^2 + x^4)^(2*n).
a(n) = Sum_{k = 0..floor(n/2)} C(2*n, n-k)*C(n-k, k).
a(n) = C(2*n,n) * hypergeom([-n/2, (1 - n)/2], [n + 1], 4)
Conjectural: a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for all primes p >= 5 and positive integers n and k. (End)
From Peter Bala, Aug 03 2023: (Start)
P-recursive: 3*n*(13*n - 17)*(3*n - 1)*(3*n - 2)*a(n) = 2*(2*n - 1)*(455*n^3 - 1050*n^2 + 691*n - 120)*a(n-1) + 36*(n - 1)*(13*n - 4)*(2*n - 1)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 2.
exp(Sum_{n >= 0} a(n)*x^n/n) = 1 + 2*x + 7*x^2 + 28*x^3 + 123*x^4 + ... is the g.f. of A143927.
a(n) = 2*A344396(n-1) for n >= 1. (End)