A027928 a(n) = T(n, 2*n-5), T given by A027926.
1, 3, 8, 20, 46, 97, 189, 344, 591, 967, 1518, 2300, 3380, 4837, 6763, 9264, 12461, 16491, 21508, 27684, 35210, 44297, 55177, 68104, 83355, 101231, 122058, 146188, 174000, 205901, 242327, 283744, 330649, 383571, 443072
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([3..40], n-> (n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120); # G. C. Greubel, Sep 06 2019
-
Magma
[(n-2)*(n^4-8*n^3+39*n^2-92*n+180)/120: n in [3..40]]; // Vincenzo Librandi, Apr 22 2012
-
Maple
seq(binomial(n,n-1)+binomial(n+1,n-2)+binomial(n+2,n-3), n=1..35); # Zerinvary Lajos, May 29 2007
-
Mathematica
CoefficientList[Series[(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
-
PARI
vector(40, n, m=n+2; n*(m^4 -8*m^3 +39*m^2 -92*m +180)/120) \\ G. C. Greubel, Sep 06 2019
-
Sage
[(n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120 for n in (3..40)] # G. C. Greubel, Sep 06 2019
Formula
a(n) = (n-2)*(n^4 - 8*n^3 + 39*n^2 - 92*n + 180)/120.
a(n) = C(n,n-1) + C(n+1,n-2) + C(n+2,n-3) with offset 1. - Zerinvary Lajos, May 29 2007
G.f.: x^3*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)/(1-x)^6. - Colin Barker, Mar 18 2012
E.g.f.: 3 + x -(360 - 240*x + 60*x^2 - 20*x^3 - x^5)*exp(x)/120. - G. C. Greubel, Sep 06 2019