cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027928 a(n) = T(n, 2*n-5), T given by A027926.

Original entry on oeis.org

1, 3, 8, 20, 46, 97, 189, 344, 591, 967, 1518, 2300, 3380, 4837, 6763, 9264, 12461, 16491, 21508, 27684, 35210, 44297, 55177, 68104, 83355, 101231, 122058, 146188, 174000, 205901, 242327, 283744, 330649, 383571, 443072
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([3..40], n-> (n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120); # G. C. Greubel, Sep 06 2019
  • Magma
    [(n-2)*(n^4-8*n^3+39*n^2-92*n+180)/120: n in [3..40]]; // Vincenzo Librandi, Apr 22 2012
    
  • Maple
    seq(binomial(n,n-1)+binomial(n+1,n-2)+binomial(n+2,n-3), n=1..35); # Zerinvary Lajos, May 29 2007
  • Mathematica
    CoefficientList[Series[(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
  • PARI
    vector(40, n, m=n+2; n*(m^4 -8*m^3 +39*m^2 -92*m +180)/120) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [(n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120 for n in (3..40)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = (n-2)*(n^4 - 8*n^3 + 39*n^2 - 92*n + 180)/120.
a(n) = C(n,n-1) + C(n+1,n-2) + C(n+2,n-3) with offset 1. - Zerinvary Lajos, May 29 2007
G.f.: x^3*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)/(1-x)^6. - Colin Barker, Mar 18 2012
E.g.f.: 3 + x -(360 - 240*x + 60*x^2 - 20*x^3 - x^5)*exp(x)/120. - G. C. Greubel, Sep 06 2019