cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027929 a(n) = T(n, 2*n-6), T given by A027926.

Original entry on oeis.org

1, 2, 5, 13, 33, 79, 176, 365, 709, 1300, 2267, 3785, 6085, 9465, 14302, 21065, 30329, 42790, 59281, 80789, 108473, 143683, 187980, 243157, 311261, 394616, 495847, 617905, 764093, 938093, 1143994, 1386321, 1670065, 2000714
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A228074.

Programs

  • GAP
    List([3..40], n-> (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720); G. C. Greubel, Sep 06 2019
  • Magma
    [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720: n in [3..40]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq((3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720, n=3..40); # G. C. Greubel, Sep 06 2019
  • Mathematica
    CoefficientList[Series[(1-x+x^2)(1-4x+7x^2-4x^3+x^4)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)
  • PARI
    vector(40, n, m=n+2; (3600 -3420*m +1684*m^2 -525*m^3 +115*m^4 -15*m^5 +m^6)/720) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720 for n in (3..40)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = Sum_{k=0..3} binomial(n-k, 6-2*k). - Len Smiley, Oct 20 2001
From Colin Barker, May 01 2012: (Start)
a(n) = (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720.
G.f.: x^3*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)/(1-x)^7. (End)
E.g.f.: (3600 - 2160*x + 720*x^2 - 120*x^3 + 30*x^4 + x^6)*exp(x)/720 - 5 + 2*x - x^2/2. - G. C. Greubel, Sep 06 2019