cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027932 T(n, 2n-9), T given by A027926.

Original entry on oeis.org

1, 3, 8, 21, 55, 143, 364, 894, 2098, 4685, 9955, 20175, 39130, 72905, 130965, 227612, 383911, 630191, 1009242, 1580345, 2424289, 3649547, 5399802, 7863034, 11282400, 15969161, 22317933, 30824563, 42106956, 56929205
Offset: 5

Views

Author

Keywords

Crossrefs

Cf. A228074.

Programs

  • GAP
    List([5..40], n-> Sum([0..4], k-> Binomial(n-k, 9-2*k)) ); # G. C. Greubel, Sep 27 2019
  • Magma
    [&+[Binomial(n-k, 9-2*k): k in [0..4]] : n in [5..40]]; // G. C. Greubel, Sep 27 2019
    
  • Maple
    A027932 := proc(n)
    1/362880 *(n-4) *(n^8 -32*n^7 +490*n^6 -4592*n^5 +30289*n^4 -147728*n^3 +543780*n^2 -1359648*n +1905120)
    end proc:
    seq(A027932(n),n=5..30) ; # R. J. Mathar, Jun 29 2012
  • Mathematica
    Sum[Binomial[Range[5, 40] -k, 9-2*k], {k,0,4}] (* G. C. Greubel, Sep 27 2019 *)
  • PARI
    vector(40, n, sum(k=0,4, binomial(n+4-k, 9-2*k)) ) \\ G. C. Greubel, Sep 27 2019
    
  • Sage
    [sum(binomial(n-k, 9-2*k) for k in (0..4)) for n in (5..40)] # G. C. Greubel, Sep 27 2019
    

Formula

a(n) = Sum_{k=0..4} binomial(n-k, 9-2*k). - Len Smiley, Oct 20 2001
a(n) = C(n,n-1) + C(n+1,n-2) + C(n+2,n-3) + C(n+3,n-4) + C(n+4,n-5), n>=1 . - Zerinvary Lajos, May 29 2007
G.f.: x^5*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7 +x^8) / (1-x)^10 . - R. J. Mathar, Oct 31 2015