A027932 T(n, 2n-9), T given by A027926.
1, 3, 8, 21, 55, 143, 364, 894, 2098, 4685, 9955, 20175, 39130, 72905, 130965, 227612, 383911, 630191, 1009242, 1580345, 2424289, 3649547, 5399802, 7863034, 11282400, 15969161, 22317933, 30824563, 42106956, 56929205
Offset: 5
Links
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
Cf. A228074.
Programs
-
GAP
List([5..40], n-> Sum([0..4], k-> Binomial(n-k, 9-2*k)) ); # G. C. Greubel, Sep 27 2019
-
Magma
[&+[Binomial(n-k, 9-2*k): k in [0..4]] : n in [5..40]]; // G. C. Greubel, Sep 27 2019
-
Maple
A027932 := proc(n) 1/362880 *(n-4) *(n^8 -32*n^7 +490*n^6 -4592*n^5 +30289*n^4 -147728*n^3 +543780*n^2 -1359648*n +1905120) end proc: seq(A027932(n),n=5..30) ; # R. J. Mathar, Jun 29 2012
-
Mathematica
Sum[Binomial[Range[5, 40] -k, 9-2*k], {k,0,4}] (* G. C. Greubel, Sep 27 2019 *)
-
PARI
vector(40, n, sum(k=0,4, binomial(n+4-k, 9-2*k)) ) \\ G. C. Greubel, Sep 27 2019
-
Sage
[sum(binomial(n-k, 9-2*k) for k in (0..4)) for n in (5..40)] # G. C. Greubel, Sep 27 2019
Formula
a(n) = Sum_{k=0..4} binomial(n-k, 9-2*k). - Len Smiley, Oct 20 2001
a(n) = C(n,n-1) + C(n+1,n-2) + C(n+2,n-3) + C(n+3,n-4) + C(n+4,n-5), n>=1 . - Zerinvary Lajos, May 29 2007
G.f.: x^5*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7 +x^8) / (1-x)^10 . - R. J. Mathar, Oct 31 2015