cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027933 a(n) = T(n, 2*n-10), T given by A027926.

Original entry on oeis.org

1, 2, 5, 13, 34, 89, 232, 596, 1490, 3588, 8273, 18228, 38403, 77533, 150438, 281403, 509015, 892926, 1523117, 2532359, 4112704, 6536993, 10186540, 15586342, 23449376, 34731776, 50700937, 73018870, 103843433, 145950389, 202879594, 279108997, 380260541
Offset: 5

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([5..40], n-> Sum([0..5], k-> Binomial(n-k, 10-2*k)) ); # G. C. Greubel, Sep 27 2019
  • Magma
    [&+[Binomial(n-k, 10-2*k): k in [0..5]] : n in [5..40]]; // G. C. Greubel, Sep 27 2019
    
  • Maple
    seq(add(binomial(n-k, 10-2*k), k=0..5), n=5..40); # G. C. Greubel, Sep 27 2019
  • Mathematica
    Table[Sum[Binomial[n-k, 10-2k], {k,0,5}], {n,5,40}] (* or *)
    Drop[#, 5] &@ CoefficientList[Series[x^5(1-x+x^2)(1-5x+9x^2-5x^3+x^4)(1- 3x+5x^2-3x^3+x^4)/(1-x)^11, {x, 0, 37}], x] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    Vec(x^5*(1-x+x^2)*(1-5*x+9*x^2-5*x^3+x^4)*(1-3*x+5*x^2-3*x^3+x^4) / (1-x)^11 + O(x^40)) \\ Colin Barker, Feb 17 2016
    
  • PARI
    vector(40, n, sum(k=0,5, binomial(n+4-k, 10-2*k)) ) \\ G. C. Greubel, Sep 27 2019
    
  • Sage
    [sum(binomial(n-k, 10-2*k) for k in (0..5)) for n in (5..40)] # G. C. Greubel, Sep 27 2019
    

Formula

a(n) = Sum_{k=0..5} binomial(n-k, 10-2*k). - Len Smiley, Oct 20 2001
a(n) = 34 -9161*n/280 -101897*n^3/20160 +794293*n^2/50400 -287*n^5/1280 +438209*n^4/362880 +5593*n^6/172800 -47*n^7/13440 -n^9/80640 +n^8/3780 +n^10/3628800. - R. J. Mathar, Oct 05 2009
G.f.: x^5*(1-x+x^2)*(1-5*x+9*x^2-5*x^3+x^4)*(1-3*x+5*x^2-3*x^3+x^4) / (1-x)^11. - Colin Barker, Feb 17 2016