A027933 a(n) = T(n, 2*n-10), T given by A027926.
1, 2, 5, 13, 34, 89, 232, 596, 1490, 3588, 8273, 18228, 38403, 77533, 150438, 281403, 509015, 892926, 1523117, 2532359, 4112704, 6536993, 10186540, 15586342, 23449376, 34731776, 50700937, 73018870, 103843433, 145950389, 202879594, 279108997, 380260541
Offset: 5
Links
- Colin Barker, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Programs
-
GAP
List([5..40], n-> Sum([0..5], k-> Binomial(n-k, 10-2*k)) ); # G. C. Greubel, Sep 27 2019
-
Magma
[&+[Binomial(n-k, 10-2*k): k in [0..5]] : n in [5..40]]; // G. C. Greubel, Sep 27 2019
-
Maple
seq(add(binomial(n-k, 10-2*k), k=0..5), n=5..40); # G. C. Greubel, Sep 27 2019
-
Mathematica
Table[Sum[Binomial[n-k, 10-2k], {k,0,5}], {n,5,40}] (* or *) Drop[#, 5] &@ CoefficientList[Series[x^5(1-x+x^2)(1-5x+9x^2-5x^3+x^4)(1- 3x+5x^2-3x^3+x^4)/(1-x)^11, {x, 0, 37}], x] (* Michael De Vlieger, Feb 17 2016 *)
-
PARI
Vec(x^5*(1-x+x^2)*(1-5*x+9*x^2-5*x^3+x^4)*(1-3*x+5*x^2-3*x^3+x^4) / (1-x)^11 + O(x^40)) \\ Colin Barker, Feb 17 2016
-
PARI
vector(40, n, sum(k=0,5, binomial(n+4-k, 10-2*k)) ) \\ G. C. Greubel, Sep 27 2019
-
Sage
[sum(binomial(n-k, 10-2*k) for k in (0..5)) for n in (5..40)] # G. C. Greubel, Sep 27 2019
Formula
a(n) = Sum_{k=0..5} binomial(n-k, 10-2*k). - Len Smiley, Oct 20 2001
a(n) = 34 -9161*n/280 -101897*n^3/20160 +794293*n^2/50400 -287*n^5/1280 +438209*n^4/362880 +5593*n^6/172800 -47*n^7/13440 -n^9/80640 +n^8/3780 +n^10/3628800. - R. J. Mathar, Oct 05 2009
G.f.: x^5*(1-x+x^2)*(1-5*x+9*x^2-5*x^3+x^4)*(1-3*x+5*x^2-3*x^3+x^4) / (1-x)^11. - Colin Barker, Feb 17 2016