cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A027926 Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0; T(n,1) = 1 for n >= 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 1, 1, 2, 3, 5, 8, 13, 20, 26, 25, 16, 6, 1, 1, 1, 2, 3, 5, 8, 13, 21, 33, 46, 51, 41, 22, 7, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 79, 97, 92, 63, 29, 8, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) = number of strings s(0),...,s(n) such that s(0)=0, s(n)=n-k and for 1<=i<=n, s(i)=s(i-1)+d, with d in {0,1,2} if i=0, in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0<=s(i)<=2i-2.
Can be seen as concatenation of triangles A104763 and A105809, with identifying column of Fibonacci numbers, see example. - Reinhard Zumkeller, Aug 15 2013

Examples

			.   0:                           1
.   1:                        1  1   1
.   2:                     1  1  2   2   1
.   3:                  1  1  2  3   4   3   1
.   4:               1  1  2  3  5   7   7   4   1
.   5:            1  1  2  3  5  8  12  14  11   5   1
.   6:          1 1  2  3  5  8 13  20  26  25  16   6   1
.   7:        1 1 2  3  5  8 13 21  33  46  51  41  22   7   1
.   8:      1 1 2 3  5  8 13 21 34  54  79  97  92  63  29   8  1
.   9:    1 1 2 3 5  8 13 21 34 55  88 133 176 189 155  92  37  9  1
.  10:  1 1 2 3 5 8 13 21 34 55 89 143 221 309 365 344 247 129 46 10  1
.
.   1:                           1
.   2:                        1  1
.   3:                     1  1  2
.   4:                  1  1  2  3
.   5:               1  1  2  3  5      columns = A000045, > 0
.   6:            1  1  2  3  5  8     +---------+
.   7:          1 1  2  3  5  8 13     | A104763 |
.   8:        1 1 2  3  5  8 13 21     +---------+
.   9:      1 1 2 3  5  8 13 21 34
.  10:    1 1 2 3 5  8 13 21 34 55
.  11:  1 1 2 3 5 8 13 21 34 55 89
.
.   0:                           1
.   1:                           1   1                +---------+
.   2:                           2   2   1            | A105809 |
.   3:                           3   4   3   1        +---------+
.   4:                           5   7   7   4   1
.   5:                           8  12  14  11   5   1
.   6:                          13  20  26  25  16   6   1
.   7:                          21  33  46  51  41  22   7   1
.   8:                          34  54  79  97  92  63  29   8  1
.   9:                          55  88 133 176 189 155  92  37  9  1
.  10:                          89 143 221 309 365 344 247 129 46 10  1
		

Crossrefs

Many columns of T are A000045 (Fibonacci sequence), also in T: A001924, A004006, A000071, A000124, A014162, A014166, A027927-A027933.
Some other Fibonacci-Pascal triangles: A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..2*n], k-> Sum([0..Int((2*n-k+1)/2) ], j-> Binomial(n-j, 2*n-k-2*j) )))); # G. C. Greubel, Sep 05 2019
  • Haskell
    a027926 n k = a027926_tabf !! n !! k
    a027926_row n = a027926_tabf !! n
    a027926_tabf = iterate (\xs -> zipWith (+)
                                   ([0] ++ xs ++ [0]) ([1,0] ++ xs)) [1]
    -- Variant, cf. example:
    a027926_tabf' = zipWith (++) a104763_tabl (map tail a105809_tabl)
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Magma
    [&+[Binomial(n-j, 2*n-k-2*j): j in [0..Floor((2*n-k+1)/2)]]: k in [0..2*n], n in [0..10]]; // G. C. Greubel, Sep 05 2019
    
  • Maple
    A027926 := proc(n,k)
        add(binomial(n-j,2*n-k-2*j),j=0..(2*n-k+1)/2) ;
    end proc: # R. J. Mathar, Apr 11 2016
  • Mathematica
    z = 15; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := 1;
    t[n_, k_] := t[n, k] = t[n - 1, k - 2] + t[n - 1, k - 1];
    u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u] (* A027926 array *)
    v = Flatten[u] (* A027926 sequence *)
    (* Clark Kimberling, Aug 31 2014 *)
    Table[Sum[Binomial[n-j, 2*n-k-2*j], {j, 0, Floor[(2*n-k+1)/2]}], {n, 0, 10}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Sep 05 2019 *)
  • PARI
    {T(n, k) = if( k<0 || k>2*n, 0, if( k<=1 || k==2*n, 1, T(n-1, k-2) + T(n-1, k-1)))}; /* _Michael Somos, Feb 26 1999 */
    
  • PARI
    {T(n, k) = if( k<0 || k>2*n, 0, sum( j=max(0, k-n), k\2, binomial(k-j, j)))}; /* Michael Somos */
    
  • Sage
    [[sum(binomial(n-j, 2*n-k-2*j) for j in (0..floor((2*n-k+1)/2))) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Sep 05 2019
    

Formula

T(n, k) = Sum_{j=0..floor((2*n-k+1)/2)} binomial(n-j, 2*n-k-2*j). - Len Smiley, Oct 21 2001

Extensions

Incorporates comments from Michael Somos.
Example extended by Reinhard Zumkeller, Aug 15 2013

A228074 A Fibonacci-Pascal triangle read by rows: T(n,0) = Fibonacci(n), T(n,n) = n and for n > 0: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 4, 3, 3, 5, 7, 7, 4, 5, 8, 12, 14, 11, 5, 8, 13, 20, 26, 25, 16, 6, 13, 21, 33, 46, 51, 41, 22, 7, 21, 34, 54, 79, 97, 92, 63, 29, 8, 34, 55, 88, 133, 176, 189, 155, 92, 37, 9, 55, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2013

Keywords

Comments

Sum of n-th row is 2^(n+1) - F(n+1) - 1 = A228078(n+1). - Greg Dresden and Sadek Mohammed, Aug 30 2022

Examples

			.    0:                                 0
.    1:                               1   1
.    2:                             1   2   2
.    3:                          2    3    4   3
.    4:                       3    5    7    7   4
.    5:                     5    8   12   14   11   5
.    6:                  8   13   20   26   25   16   6
.    7:               13   21   33   46   51   41   22   7
.    8:            21   34   54   79   97   92   63   29   8
.    9:          34   55   88  133  176  189  155   92   37   9
.   10:       55   89  143  221  309  365  344  247  129   46  10
.   11:     89  144  232  364  530  674  709  591  376  175  56   11
.   12:  144 233  376  596  894 1204 1383 1300  967  551  231  67   12 .
		

Crossrefs

Cf. A000045 (left edge), A001477 (right edge), A228078 (row sums), A027988 (maxima per row);
some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741.

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return Fibonacci(n);
        elif k=n then return n;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 05 2019
  • Haskell
    a228074 n k = a228074_tabl !! n !! k
    a228074_row n = a228074_tabl !! n
    a228074_tabl = map fst $ iterate
       (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [1]))) ([0], [1,1])
    
  • Maple
    with(combinat);
    T:= proc (n, k) option remember;
    if k = 0 then fibonacci(n)
    elif k = n then n
    else T(n-1, k-1) + T(n-1, k)
    end if
    end proc;
    seq(seq(T(n, k), k = 0..n), n = 0..12); # G. C. Greubel, Sep 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, Fibonacci[n], If[k==n, n, T[n-1, k-1] + T[n -1, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}] (* G. C. Greubel, Sep 05 2019 *)
  • PARI
    T(n,k) = if(k==0, fibonacci(n), if(k==n, n, T(n-1, k-1) + T(n-1, k)));
    for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 05 2019
    
  • Sage
    def T(n, k):
        if (k==0): return fibonacci(n)
        elif (k==n): return n
        else: return T(n-1, k) + T(n-1, k-1)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 05 2019
    
Showing 1-2 of 2 results.